TUB Faculty of Architecture	UB Faculty of Architecture Department of Mecha		ls and Struc	tures		
Subject: FUNDAMENTALS OF STRUCTURES		Code	Credit points	Date:	Semester:	Year:
Dr András Sipos		BME	0	14/15	2 nd	Gen.
Dr András Draskóczy		EPSTG201				Course

TOPICS SCHEDULE

Week	Date	Tuesdays 12.15-14.00 K221	Date	Thursdays 15.15-17.00 K221
,, con	Built	Dr András Draskóczy	Built	Dr András Sipos
1.	10.02	1. Introduction : the aims of the course.	12.02.	B1. Dimensions. Basic properties of
		Buildings. Functions and requirements.		functions. Basics of kinematics
		Materials and structures. Design of		
2.	17.	buildings. Loads 2. 1st site visit: an existing, functioning	19.	B2. Real numbers. Slope of a function.
۷.	17.	building. The Central Building of the	19.	Kinematics II.
		TUB. Parts of buildings		
3.	24.	3. Discussion of experiences of the 1st site	26.	B3. Scalars - vectors. Netonian principles
		visit. Requirements of the built		of machanics. Force.
	02.02	environment. Load-bearing requirements	05.02	DATE:
4.	03.03.	4. Responses of the structural materials when being loaded The notion of stresses	05.03	B4. Trigonometry. Netonian principles of machanics II. Force. Euilibirum of forces in
		and deformations.		2D.
		2nd visit: laboratory testing of structural		25.
		materials (timber, steel, concrete)		
5.	10.	5. Improving the practice of problem	12.	MP1. Components of forces. Resultant
		solution, examples.		and equilibrium of forces in 2D.
		Discussion of experiences of the 2nd site visit: Characteristics of structural		
		materials. Statistical evaluation of		
		measurement data: material strength . The		
		notion of safety.		
6.	17.	6. Distribution of MP1, discussion of the	19.	Test 1: Components of forces. Resultant
		typical problems		and equilibrium of forces in 2D.
		Film projection (loads, behaviour of structural materials)		
7.	24.	7. 3rd site visit: a construction site . Load-	26.	B5. Gravity. Mass and weight. Loads.
/.	24.	bearing parts of buildings	20.	D3. Gravity. Mass and Weight. Loads.
8.	31.	8. Improving the practice of problem	02.04.	B6. Circular motion.
		solution, examples.		
		Discussion of experiences of the 3rd site visit (I). Structural modelling , the static		
		model of load-bearing structures.		
		Functions of structures, requirements		
9.	07. 04.	9. Improving the practice of problem	09.	B7. Vector product. Moment. Couple of
		solution, examples.		forces.
		Discussion of experiences of the 3rd site		
		visit (II). Responses of load-bearing		
		structures when loaded. Limit states. Fundamental laws of structural analysis		
10.	14.	10. 4th site visit: a project bureau	16.	B8. Area under a function. Energy and
		Francisco Progession		power. Variational view of mechanics.
11.	21.	11. Improving the practice of problem	23.	MP2: General coplanar force systems
		solution, examples		
		Discussion of experiences of the 4th site		
		visit (I). The process of creation . Parties contributing to design and realization of		
		works of art of architecture.		
12.	28.	Distribution of MP2, discussion of the	30.	Test 2: General coplanar force systems.
		typical problems		
13.	05. 05.	12. Improving the practice of problem	07.05.	Summary of problems treated in the course
		solution, examples.		
		Discussion of experiences of the 4th site		

		visit (II). Parts and kinds of documentations of buildings . Scales and graphical symbols. Structural projects		
14.	12.	13. Consultation for the test repetition.	14.	Test repetition
		Solution of problems.		

TUB Faculty of Architecture	JB Faculty of Architecture Department of Mechanics, Materials and Structures					
Subject: FUNDAMENTALS OF STRUCTURES		Code	Credit points	Date:	Semester:	Year:
Lecturer:	Practical lessons:	BME	0	14/15	2 nd	Gen.
Dr András Draskóczy	Dr András Sipos	EPSTG201				Course

REQUIREMENTS

Conditions of	-Registration of the subject Fundamentals of Structures		
inscription:			
Character of	Lectures and practical lessons in small groups, laboratory and site visits.		
the lessons:	Types of practical lessons:		
	B: blackboard exercise, problems are solved at the blackboard by the practical teacher		
	MP: marked practical, work done by help of the teacher		
	T: test, individual work (no aids can be used, only the calculator)		
Prescriptions	Presence is obligatory and will be regularly checked.		
for presence:			
Mid-semester	Two 90 Minutes tests (T), max. 120 points each, 0 point in case of absence. Points given for theory		
controls	and problem solution of tests will be valuing 33 and 67% respectively. For supplying one missing		
(dates as given	test or improving the worse test one occasion will be given at the end of the semester. Theme of this		
in topics	test will range the whole material of the semester. Its points will substitute that of the		
schedule):	missed/improved test. There is no other possibility to improve the test results.		
	Two 90 minutes marked practical exercises (MP), valuing 12 points max. each, 0 point in case of		
	absence. There is no possibility for supplying or improving MP-s.		
Conditions of	1. Presence on at least 70% of lessons (max.2x 3 absences)		
signature:	2. 60 points mean of the test results		
	3. Achievement of at least 120 points from the total of 240 points that can be given as maximum		
	for the term work, determined as given below:		
	$0.9x\Sigma$ Two test results + Σ MP results		
Mid-semester	Min. 50% of the total of. 240 points should be achieved.		
mark:	Final mark:		
	0-119 points fail (1)		
	120-144 points pass (2)		
	145-169 points satisfactory (3)		
	170-194 points good (4)		
	195-240 points excellent (5)		

Recommended literature (copies available at the copying room of the Department K261):

A.J. Francis: Introducing structures pp. 1-28, pp221-259, pp278-285

Daniel L. Schodeck: Structures pp3-120, pp472-534

H.S. Howard: Structure, an architects' approach, Mc Graw Hill Co. 1966 pp3-43, pp204-233, pp275-286

Information available on the homepage of the Department of Mechanics and Structures: www.szt.bme.hu/English courses/Fundamentals of Structures/2015:

- -Topics schedule and requirements of the subject
- -Lecture notes
- -Solution of some selected problems