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A finite e lement  simulation of  fibre fabric shaping process  is proposed.  The behaviour  of  fabrics is experimental ly 
studied f rom biaxial tensile tests on cross shaped specimens.  These  exper iments  permit  to investigate the influence 
on the fabric behaviour  o f  the undulation variations of  the weaving and of  the interactions be tween warp and weft  
yarns. A constitutive model  including these aspects is proposed,  validated and identified f rom the biaxial tests. 
Finite e lements  made  o f  woven  yarns are built in the field of  non-l inear kinematics.  The deformation energy is 
calculated as the sum o f  the energy of  each elementary cell for which the biaxial behaviour  previously identified is 
considered.  A drawing simulation with square punch and die is presented.  It al lows to dist inguish the geometr ies  
of  the tools which are possible  or not  for the shaping process.  The influence of  the undulation variations are studied 
in a second example.  © 1997 Elsevier  Science Limited. 
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N O T A T I O N  

ol, 18, y,  6 Indexes equal to 1 or 2 
xl,  x2 Mean plane vectors of the 

fabric. 
x3 Normal vector of the fabric 
L0, ' Inter-yarn length. 
e0~ Distance between mean axis 

of yarn oe and mean plane of 
the fabric. 

0~ Angle between yam o~ and axis 
X3. 

w,~ Displacement of point P,~ 
along x 3. 

ef~ Strain of yam ~. 
Tf' Tension of yam a. 
Fc Compression force between 

the two yams along x 3. 
u Displacement vector of a point 

M at an initial position x0. 
N k 2D interpolation function 

related to node k. d 
D,(A)6 = ~--T(A(u + Xr))~= 0 Frrchet derivative of A with u^ 

regard to u in the direction & 
rt Virtual displacement field. 
S = S~h,~0 Q ha0 Second Piola-Kirchhoff stress 

tensor. 
T = T~h,~0 (~) his 0 Lagrangian tensile tensor. 
E = E ~ h  ~° (~) h ~° =/~,~g~0 @ gao Green-Lagrange strain tensor. 
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W = T~Lo h~o (~) h~o = l~¢~gao (~) gao 

D = OW = b~y~g~o (~) g~o (~) g~o (~) g~o 
OE 

IInll 
h 10, h20 

h 10, h20 

glo, g20, g b  g2 

gl0, g20 

B with D,(/~a)~t=B~asn s 
K e 
X; 

Fen, 

I N T R O D U C T I O N  

Lagrangian static tensor. 

Behaviour tensor of the fourth 
order. 
Norm of vector u. 
Initial unit vectors, in the yarn 
directions. 
Contravariant vectors associa- 
ted to hlo, h20. 
Initial and current material 
vectors in the mean plane of 
the fabric. 
Contravariant vectors asso- 
ciated to gin, g20. 
Strain interpolation matrix. 
Elementary stiffness matrix. 
Elementary geometrical stiff- 
ness matrix. 
Elementary internal load 
vector. 

F i b r e  f a b r i c s  (g lass ,  c a r b o n ,  kev la r . . . )  a re  v e r y  e f f i c i e n t  

r e i n f o r c e m e n t s  fo r  th in  c o m p o s i t e  m a t e r i a l s .  T h e  m a n u f a c -  

t u r i n g  o f  t ex t i l e  c o m p o s i t e  s t r u c t u r e s  w i t h  c o m p l e x  s h a p e s  

c a n  b e  o b t a i n e d  b y  d e e p  d r a w i n g  o f  an  in i t i a l ly  flat  f ibre  

f ab r i c ,  p r i o r  to  t h e  r e s in  i n j e c t i o n  ( R . T . M .  p r o c e s s )  t'2 o r  

p r i o r  to  r e s in  h a r d e n i n g .  3 F o r  a g i v e n  f ab r i c  a n d  a g i v e n  3D 

s u r f a c e ,  a m a i n  q u e s t i o n  is w h e t h e r  t h e  s h a p i n g  o p e r a t i o n  is 
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possible. Efficient computational programs have been 
developed in the last few years for the simulation of  metal 
sheet forming especially in automotive industries. 4 6 The 
metal blank is submitted to large membrane strains and 
consequently to significant thickness variations. Thickness 
distribution and its consequences (such as the possible 
tearing of  the metal sheet) are one of  the main results of  the 
computation. The deformation of a fabric during a shaping 
process is very different. The strains in the directions of  
the yarns are small ( --< 2% for glass fibre yarns as shown 
later). The deformation of  the fabric into a non developable 
surface is mainly due to angular variations between the warp 
and weft yams. 

The purpose of  the present paper is to describe a 
simulation tool of  the fabric shaping process. Computa- 
tional simulations of  such problems have been proposed, 
mainly based on geometrical approaches. 7"s The present 
work is based on a mechanical approach and a finite 
element method. It defines the deformation state in the 
fabric during the forming process on the one hand, and 
the tension state of  the fibres on the other hand. These two 
quantities are important and must be checked to define 
whether the deep drawing is possible. In particular, in- 
plane shear deformations are the main phenomenon of  
the fabric deformation. They are significant (up to 60 ° in 
some cases) but a limit value exists above which yarns are 
overlapping, and this leads to local folding. Tensions in 
the yarns also have to remain lower than the fracture value 
of each yarn. 

In a first section, the mechanical behaviour of  fabrics 
is analysed from biaxial tests. These ones allow to point 
out the non-linearities induced by undulation variations of 
the yarns during the deformation. The phenomenon is 
biaxial considering that warp and weft yarns are linked 
because of  the weaving. As a consequence, the experimental 
study is carried out by the mean of  a biaxial tensile device 
on cross-shaped specimen. A model for the behaviour, 
based on local equilibrium of the elementary pattern, is 
identified. It properly expresses the phenomenon of  the 
progressive hardening that appears at the beginning of  
the tensile test and which is linked to undulation variations 
of  the yarns. 

In a second section, a finite element simulation is 
presented. Elements made of  woven yarns are built in the 
field of  large strains. The deformation energy is calculated 
as the sum of the energies of  each elementary cell which 
includes the behaviour previously defined. 

MECHANICAL BEHAVIOUR OF FIBRE FABRICS 

Studies relative to textile structural composites behaviour, 
i.e. matrix reinforced by woven fabrics, are very numerous. 
The problem mainly consists in defining the characteristics 
of  an equivalent homogeneous material and forecasting the 
matrix damage under high load. 9-11 For the woven fabric 
alone, the problem is quite different because the absence of 
resin allows relative yarn displacements which mainly 
influence the global fabric behaviour. 

Figure I Deformation of the fabric. Straight lines have been drawn in the 
weft and warp directions prior to forming 

Absence of shear stiffiwss 

The first consequence for a classic woven fabric with two 
fibre directions is the absence of  the in-plane shear stiffness 
due to angular variations between warp and weft yarn 
directions (a phenomenon sometimes called trellising). 
These variations are significant (up to 60 ° in some cases) 
(Figure 1). Consequently, the modelling used for the fabric 
behaviour will have to account for large displacements but 
also for large strains. 

Absence of bending stiffness 

Yarns consist of  very small section fibrins whose bending 
stiffness is negligible, therefore these of  yarns and fabric are 
negligible too. The yarn or fibrin buckling being immediate 
under a compression load, the fabric compressive stiffness 
can also be neglected. 

Absence of interfibre sliding between warp and weft 
directions 

The evolution of a straight line grille drawn on the fabric 
prior to shaping, shows that the fabric can be considered as 
a continuous 3D surface domain (Figure 1). Actually, the 
drawn lines become curved but remain continuous. Taking 
into account that these lines have been drawn alternatively 
on warp and weft yarns, it can be deduced that there is no 
interfibre sliding (in any case, far enough from the fabric 
edges) and that two initially superimposed yarns remain 
superimposed during the deformation process. This non- 
sliding condition is ensured by the weaving and the friction 
between yarns. One of the main consequences is the 
possibility to use a classic Lagrangian finite element 
approach for the surface domain of the fabric, as done in 
section "Finite element simulation". 

Influence of undulation variations. Geometric 
non-linearities on a mesoscopic scale 

A characteristic aspect of  woven fabrics is connected with 
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Figure 3 Undulations and interactions 

the absence of  resin and is the influence of undulation 
variations while the fabric is being loaded. A uniaxial test in 
the yarn direction classically shows a progressive hardening 
area before a linear zone (Figure 2 for a glass fibre plain- 
weave fabric). 

In many cases, this non-linear area concerns large strain 
values compared to the one of  the entire woven structure 
(strains before fracture in the yarn direction remain low, 
about 2% for glass fibres). Accordingly, this aspect has to 
be taken into account in the modelling of  the material 
mechanical behaviour. 

In fact, the fabric global tensile behaviour results from 
yarn deformation, on the one hand, and from the tendency 
the yarn has to straighten, on the other hand (Figure 3). 

The previous phenomenon is part of  the geometric non- 
linearities on the mesh scale. It is not strictly microscopic 
because undulations due to weaving are quite large (a few 
millimetres). Nevertheless, this scale is smaller than the 
one of  the fabric structure under consideration, so we will 
speak of  mesoscopic phenomenon. Moreover, it is a biaxial 
problem because of  the woven character of the structure. 
When the undulation decreases in one direction, it tends to 
increase in the other direction. So the behaviour modelling 
will have to be biaxial and to relate both warp and weft 
strains to both warp and weft tensions. 

The translation of  undulation modifications, on the 
mesh scale, into a global non-linear behaviour is a particular 
case of  the non-linear mechanics of  materials where the 
material-type non-linearities, on a macroscopic scale, 
translate some geometric-type or contact-friction-type 
non-linearities, on a microscopic scale. Friction plays a 
significant role in fabric mechanical behaviour. It ensures 
material continuity (of 3D surface-type) by imposing to 
two initially superimposed yarns to remain superimposed 
during the deformation (see section "Absence of  
interfibre sliding"). It can also be noted that the tensile 
load-strain curves are reversible, at least for a large range 
of woven materials like these presented in the following 
paper. So, there is no (or little) energy dissipation due to 
friction. Friction will only be implicitly taken into account 
in the proposed modelling by giving a meaning to the 
notion of  warp and weft strains, in a woven continuous 
medium, linked to warp and weft tensions by a non-linear 
elastic law. 

Figure 4 Biaxial tensile device 

Biaxial test 

Considering the previous remarks, the experimental 
study, used to determine the fabric behaviour, is based on 
a biaxial tensile device. It aims at obtaining, for a given 
fabric, experimental results expressing undulation and 
interaction phenomena and allowing to validate and identify 
(see section "Identification of  a biaxial model")  a 
representative model for fabric behaviour. The choice of  
cross shaped specimen for biaxial tensile tests is well suited 
to fabric problem. The main objection encountered with this 
kind of tests when they are performed on classic rigid 
materials (metal for example) lies in stress field inhomo- 
geneity inside the specimen, notably near its inner corners. 
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Figure 5 Cross shaped specimen. Definition of initial state 
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Figure 6 Biaxial tensile test of glass fibre plain-weave fabric. Experi- 
mental results and modelling (in solid line) for various ratios k = strain in 
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Figure 7 1/4 elementary mesh 

The fabric having no shear stiffness, this problem is 
avoided. The device used (Figure 4) imposes homogeneous 
strain field, in variable ratios between warp and weft 
directions. This device is based on the kinematics of a 
double four-bar device which has been proposed for 
metallic materials. 12 This kind of kinematics ensures, in a 
simple way, the fixity of the specimen symmetry axes 
during the test. To ensure an efficient maintenance of the 
specimen in the jaws, the cross ends are stiffened by 
prepregs. 

Classic means to measure strains cannot be used on active 
area of the specimen. In particular, fibrous texture pre- 
cludes the using of strain gages. Furthermore, the relative 
displacement of the jaws is not directly significant con- 
sidering the non-woven part of the cross shaped specimen. 
An optical measurement of the strain, by photographing on 
very fine grain film and using a great enlargement, 
proved very efficient. Getting yarn displacements is easy 
and using a scanner to digitize it, and then, a picture 
processing software, leads to a good accuracy (an about 
0.5% error) on strain measurement. 13 A great advantage of 
this device lies in the simultaneous acquisition of the strain 
in each point. It also allows to check whether the 
deformation is homogeneous on the entire woven area. 
This checking is determining and enables an optimization 
of certain parts of the device. Moreover, experimental 
procedures can be validated. 

In fact, defining the initial configuration of the specimen 
is an essential step in fabric tests. Woven structure has no 
shear or compressive stiffness, and its tensile stiffness is 
very low when stress is zero, as a consequence, initial state 
is not strictly defined. This leads, if no specific measure 
is adopted, to erroneous results pointed out because they 
can not be repeated. To overcome this difficulty, the initial 
dimensions of the specimen are defined under a low 
tensile effort (a few deciNewton per yarn) imposed by 
the device presented in Figure 5. A boring device enables 
to calculate the specimen fight dimensions in this position. 
So, initial state is clearly defined and tests are well repeated. 
Figure 6 represents test results for different strain ratios in 
the case of a glass fibre plain-weave fabric. A progressive 
hardening area, linked to undulation decreasing and coming 
before a zone of linear behaviour, is clearly noticed. When 
the two strains are not equal, undulation decreasing, and 
so, progressive hardening, are more significant in the 
direction of the higher strain. The phenomenon is very 
more limited, even nil, in the other direction. These different 
points are schematized on Figure 3. 

Identification of a biaxial model 

Experimental data, previously obtained, allow the 
identification of a biaxial model for fabrics. Several 
approaches are possible. 14"15 The model presented here 
for plain-weave fabrics is part of models based on the 
equilibrium of an elementary mesh during its deforma- 
tion. 16'17 The model links both warp and weft tensions T ~ 
(a = 1 or 2) to both warp and weft strains e~. xl, x2 
describe the mean plane of the fabric, and x3 its normal. The 

456 



Textile composite forming: P. Boisse et al. 

500 v 

400 } 

3 0 0  

o 200 

100 

0 

Figure 8 

.J 
.ff 

J 
P • 

0 0.5 1 1.5 2 2.5 3 

Strain (%) 

Tension v e r s u s  strain curve for a single fibre yarn 

initial geometric characteristics L0~,e0, are defined on 
Figure 7. The following intermediate variables are used: 

~f~: 

0~: 

wc~: 

Fc: 

strain of yarn ~. 

tension of yarn c~. 

angle between yarn a and axis x3- 

displacement  of point P .  along x3. 

compression force between the two yarns along x3. 

A tensile test on a yarn allows the identification of the 
tensile behaviour. Contrary to load-strain tensile curves for 
fabrics, the one of a yarn is straight until a progressive 
breaking of the threads (Figure 8). It will be assumed that 
this limit is not reached, and the simulation presented in 
section "Numerical examples" permits to check this state 
of tension. This is a great advantage of the mechanical 
approach in regard to geometrical approaches like 3D 
wrapping. 7'8 

The tensile behaviour of each yarn c¢ (a = 1 or 2) 
(Figure 8) is expressed by 

T 7 =C%~o (1) 

and the behaviour in transverse compression is supposed 
to be: 

w 1 - w 2 - - A ( 1  - e  -BFc) (2) 

The mesh geometry imposes: 

( 4 ( % , +  X~w~) 2 +L02(1 + e , )2 )  1/2 

~ f ~ =  (L~ +4e~ , )  1/2 
1 (3) 

where 

and 

X , = - I  i f c x = l  

X = = I  i f c x = 2  

cos0~ = 2(%, -t- X~w~) (4) 
(L2° (1 + e~)2 + 4(eo + X.w.)2)  '/2 

Equilibrium of points P~ and of the entire mesh leads to: 

T;cosOl = T~cosO 2 T"~= T~sinO, Fc=2T~cosO, (5) 

The system of equations (1)-(5) links tensions T",  T 22 to 
strains e ~1, e22. When the strains are given, the tensions can 
be found by solving a simple non-linear equation [obtained 
after several substitutions on eqn (5)] with w~ as the 
unknown. This quantity allows the determination of 
the others. 

The experimental study presented in section "Biaxial 
test" makes possible the validation of the model described 
above and the identification of the necessary coefficients 
(Figure 6). In particular, it underlines the crucial role played 
by the behaviour of the yarn in transverse compression. 
In this direction, the yarns are quite stiffless so they are 
flattened a lot, when the loading is started. Undulation 
variations are found higher when considering the yarn 
compressible than when considering it incompressible. 
Some models are based on this last hypothesis ~6 and the 
present experimental study shows that they can not express 
the really observed behaviour. For example, this flattening 
explains the non-linear area when warp and weft strains 
are equal. Because quantifying this transverse behaviour by 
experimental means is hard to perform, the coefficients that 
define eqn (2) are identified thanks to biaxial tensile curve 
when warp and weft strains are equal. Considering the good 
coherence with experimental results (Figure 6), the model 
can be used in a structure theory for woven fabrics. The 
fabric tested Figure 6 is a plain weave glass fibre fabric. 
The geometrical parameters and the mechanical coefficients 
of eqn (1) eq.(2) eq.(3) eq. (4) eq. (5) are the following: 

L0, = L02 = 4.76mm e0~ = e02 = 0.238mm (6) 

A---- 0.075mm B = 0.25N- 1 C 1 _-- C 2 = 38000N (7) 

Remarks and limits 

The experimental study and the modelling presented 
in sections "Biaxial test" and "Identification of a biaxial 
model",  are made for plain-weave fabrics. For other 
geometry of the elementary mesh (twill weave, satin 
weave,...), phenomena remain of same kind. Some studies, 
both experimental and of 3D numeric simulation, concern- 
ing elementary mesh, are under way in order to show the 
influence of the geometry in these different cases and to see 
how the previous model has to be modified. 

Angular variations between warp and weft directions 
during forming is not taken into account in the previous 
model. Although these distortions are significant, relations 
between tensions and strains in yarn directions are supposed 
to be unchanged. This is the conclusion given by the model 
seen on section "Identification of a biaxial model",  when x l 
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and x 2 are not orthogonal. Nevertheless, an experimental 
study, based on a biaxial tensile device that allows to fix a 
different-from-90 °-angle between the two tensile direc- 
tions, is being carried out in order to check this assumption. 

FINITE ELEMENT SIMULATION 

Global equilibrium 

An elementary pattern is considered in its initial position 
(that is to say before deformation) where the two yarn 
directions are not necessarily perpendicular (see Figure 9). 

h~o and h2o are the unit vectors in the warp and weft 
directions, respectively. 

Global equilibrium on the initial configuration is classi- 
cally written: 

f S : D u ( E ) ~ t V o -  f a f o . ~ d V o +  f to.~/dAo=0 (9) 
f~o ]?t o 

/ 

Figure 9 

/ 

/ 

h20 

l 

/ 
t 

Elementary pattern in its initial position 

hlo 

V~/virtual displacement with ~/= 0 on I'u, part of the frontier 
with prescribed displacements.f0 are body loads in f~0 and to 
are surface loads on I'to, part of the frontier with prescribed 
efforts. D.(E)~I is the variation of the Green-Lagrange 
deformation tensor E (see the nomenclature). Its compo- 
nents in h s0@ h n0 are the values measured in the experi- 
mental study (see section "Mechanical behaviour of fibre 
fabrics" and Appendix A). 

S is the second Piola-Kirchhoff stress tensor like: 

df0 
S.no - dA ° (10) 

where dA0 is the area, in the initial configuration, of the 
surfacic element with no as its normal, and where df0 is 
the connective transport of the effort on this surface, in 
the initial configuration. Considering that the yarns have 
only tensile stiffness (see Appendix B), for a cell directed 
by hi0 and h2o: 

S = s l l h l 0  (~) hi0 + $22h20 (~) h20(S 11 and S 22 ~-~ 0) (11) 

The Lagrangian tensile tensor of second order T is defined 
by: 

T = T l l h l o  @ hlo  + T22h20 @ h20 (12) 

wi thTl l  f II T22 f = S dA 0 = S22dA0 (13) 
JAlo A2o 

where Al0 and A20 are the cross sections of yarns directed 
by h~0 and hE0. T 11 and T 22 are the moduli of the efforts 
along warp and weft yarns (see Appendix B). 

Notation: all magnitude A, relative to the elementary 
cell p will be noted PA. 

Denoting D.(E)~ = (D.(E)~I),~h '~° @ h ~°, global Lagran- 
gian equilibrium can be written: 

PS 11 P [D.(E)~/] 11dVo 
p = 1 PV° 

+ - Io!o* o 
- [ toaldA o = 0  (14) 

2 ]?t o 

J 

1 

+1 3 

Reference element 

¢1 

Figure 10 Three dimensional surfacic finite element composed of woven 
elementary cells 

V~/~ = 0 on ru 

is the number of elementary cells of the where ncell 
structure. So: 

ncell 
~ .  [ P T  11 P(Ou(E)rl)ll PLo,-Jr- PT22P(Ou(E)~l)22 PL02 ] 

p = l  

-- ~S0.~dV0--  ~Ft0t0.~A0=0 (15) 

We note W the tensor of second order like: 

PW = PT li PLOl Phlo @ p hie + PT 22 PL02 Ph20 (~ p h20 
(16) 
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The equilibrium becomes: 

.~eH y f  E pDu(E)~ : 'W  - o.~ldVo 
p =  1 ~l  

- ; r J o . ~ l A o  = 0 V~hl = 0 on F, (17) 

Finite elements made of elementary cells 

A 3D surfacic finite element is defined. It is made of 
ncelff elementary cells, which warp and weft directions are 
the natural directions of the element (Figure 10). 

Note: In order to simplify, the presentation is restricted 
to a four-node element which cells are directed along the 
natural directions of the element, nevertheless: 

- - a  triangular element is easily built in the same way. It 
is useful for some initial geometries of the fabric. 

- - a n  element which directions are not these of the cell 
can be obtained in a similar way. In that case, supple- 
mentary terms in the matrix components are due to 
the scalar products between the director-vectors of 
the yarns and the element. Consequently, the numer- 
ical efficiency decreases. For simplicity and numerical 
efficiency, the element described below is built in the 
yarn directions. In general, initially flat fabrics can be 
meshed easily with such elements. 

The finite element presented (Figure 10) is made of four 
nodes and uses the classic bilinear interpolation functions: 

N 1 : ~ ( 1 - - ~ 2 ) ( 1 - - ~ 1 )  N 2 : ~ ( 1 - - ~ 2 ) ( 1 + ~ 1 ) ( 1 8 )  

N3 = ~(1 +~2)(1 + ~ 1 ) N 4  = ~ ( 1 +  ~2) ( 1 -  ~1) 

On each node i, the displacement vector u i has three 
components which define the three degrees of freedom 
per node. The element is isoparametric. If x0 is the 
initial position of a point, x its current position and u its 
displacement: 

4 4 
X=X O+u U :  E Niui X0= E Nixio (19) 

i=1 i=l 

The classic covariant material vectors are defined from 
the coordinates ~l and ~ 2 in the reference element: 

Ox o Ox 8x o Ox 
gl0 = ~ l  gl = ~ 1  g20 : ~ 2  g2 ~--- ~ 2  (20) 

The contravariant frame (glOg2O) is associated to the 
covariant frame (glo~g20) by: 

g~°.g~o = 6~ (Kronecker delta) et and/3 are indexes equal 
to 1 or 2 (21) 

The components of the Green-Lagrange strain tensor in 
the contravariant frame 

E = / ~ g = 0  (~) g~0 (22) 

are classically linked to the displacements: 

Ou Ou ) 1 /  Ou Ou - -  ~ (23) 
E~ : ~ ~ .g~o  + ~ 'g~o  + O~,~" 

They define the terms of the strain interpolation matrix: 

Du ( / ~ )  ~/----/~,~s~s (24) 

1 [ O N  k , . ON k , , 
with B ~ s =  ~[-ff-~(g~0)m + -~(g~O)m 

( o. o.) 1 + \ (uq),,, 
and 

k int f s + 2~ = ~ f - - )  m = s - 3 ( k - 1 )  q ~ [ 1 , 4 ]  

(25) 

Newton method 

The equilibrium eqn (17), associated with the finite 
element discretization: 

nce l le  ~a~f o~dV ° 
E Y ,Vu(E)  :'W- 
elt p=l 

- ; r  t0.~dA0 = 0 V~/~ = 0 on P, (26) 

is a non-linear equation, considering the geometric non- 
linearities and the non-linear behaviour that links up the 
tensions and the strains, like defined in section "Mechanical 
behaviour of fibre fabrics". This equation is solved by a 
Newton-type scheme for each increment. 

G(u,~) = 0 VTt/~ = 0 on Pu is replaced by a series of 
iterations j where 

OuJ;G(u, y)Au a = - G(u j, y) (28) 

And then: 

n c e l l  e 

y :,w(,eJ) 
e h  p =  1 

(ay 
n c e l l  e 

+ E E PDw(E)~? : ~ -  : nDu ~(E)AuJ 
el l  p = 1 

(by 
(29) 

n c e l l  e 

Y Y 
el t  p = 1 

(cy 

+ fnJo.lldVo + fuoto. dAo 

Vr/Ir/= 0 on F u 

Taking into account the nodal interpolation (19), this 
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expression can be written as: 

T e Z "qe T(Ke '~-Ke)J (Aue)J :Z  e (Fext__ (F~nt)J) (30) 
elt elt 

where 7/~ and (Auey are the nodal elementary component 
vector of the virtual displacement and of the displacement 
increment, respectively. (Key is the elementary stiffness 
matrix at iteration j; (K~,) / is the elementary geometrical 

(Fintf  is the elementary inter- stiffness matrix at iteration j; ~ 
ior load vector at iteration j; F~xt is the elementary load 
vector• 

Since eqn (28) eq. (29) eq. (30) hold for kinematically 
admissible to zero virtual displacement, eqn (30) gives the 
displacement increment at iteration j as the solution of 
the incremental linear system 

(K+Ko)J(Au)i---F~xt- (Fi~t) j (31) 

with, if Aett is the assemblage operator on all the elements 
of the structure, 

K J= At(Ke)J (Ko)J= A(Ke) j (Fi,,t)J= A(Fent) j (32) 

In the following section, the calculation of the elementary 
matrices is detailed for a four-node finite element made of 
fibres. 

Calculation of stiffness and internal load matrices 

Afterwards, indexes p (number of the cell) and j (number 
of the iteration) will be omitted, for simplicity reasons. 

Internal load vector. The elementary internal load vector 
is given by part (c) of (29). 

ncell e 
(c)= ~" (Du(E)~): W(E)= (~e)TFent et'Fe "~ = ~s ~ int}s (33) 

p=l  

ncell e 
~ [~a[3srls[Lo, T l l (gaO(~g 'o )  : (hlO(~)h,o) 

p = l  

+Lo2T22(g~O @g~O) : (h20 @h20)] (34) 

ncelr 1 1 
So: (Fient)s = Z /~'lsLo, T'l ilgloiiZ + [~22sL02 T22 

p = ' IIg2oll 2 

(35) 

Geometrical stiffness matrix. The expression of the geo- 
metrical stiffness matrix is given by part (a) of (29)• 

ncell e 
(a)= ~" Du(Du(~.~t3)~I)AulTV~ = ~e 7Koaue e 

p= l  

e K e e ( ~ ) r (  a)rs(AU )s (36) 

where W~ are the components of W in the flame g~o @ g,o 

W = T'~'~L%h,m @ h~o ----- W~g~o @ gt~o (37) 

So ff.n Tn 1 9¢22 L T22 [ ~/12=1~/21 
• =Lo, ~ . ~  -- o=" iig2o112 ----0 

(38) 

Differentiation of eqn (23) gives: 

1 i / &l OAu 
Ou(Du(E"~)~l)Au= 2 \ 0 ~  

&/ 3Au'] 
~- 0(~" O ~ J  (39) 

ncell~( O~ omu"~ ~vO~O ~ 
so that : (a )=  

Considering the nodal interpolation of the displacements: 

ncelle c3N k 3N q 
(a)=  p--~l 9¢~ O~ O~Jo~ (~]k)m(muq)m=(~e)r(Ke)rs(mue)s 

(40) 

with k,q e[l,n nodes = 4] and me[l, n components = 3] 

De n o t i n g k = i n t  ( r 3 ~ 2 )  a n d q = i n t  ( ~ )  

If r -  3 k = s -  3q 

ncell2 1 ON k ON q 
(l(e)rs -~- Z Lol Tll  

p=l Ilgloll 20~l O~l 

1 ON k ON q 
+ L02 T22 IIg20112 0~2 0~2 (41) 

If r - 3k -7 s s - 3q (K e) rs : 0 (42) 

Stiffness matrix. 
part (b) of (29): 

nceU~ O W ( E) 
(b)= Z Du(E)~I : 

p= l  

The stiffness matrix is obtained from 

: D u (E)Au = ~leTKeAu e 

e e H e = ( 7  )r( K )rs( A )s (43) 

OW 
D = 0E- is a behaviour tensor of the fourth order. 

D =  OW 
OE = D ~ g ~ °  @ g~o @ gyo @ g~o 

OT ~ 
= L% 0~E~ h~0 @ h~0 @ h~0 @ h~0 (44) 

O T ~ 
Terms ~ are known from the behaviour modelling done 

in section "Mechanical behaviour of fibre fabrics". 

So that :/31111 -- L0, OT 11 [)2222 __ L02 0T22 
Ilgloll 40El l  IIg20ll 4 0E22 

and 

D,,22_ 1 (0 '1)b221, - 1 (0 22) 
Ilglol1211g20112 \ 0E~22./ {Iglol[ 211g20112 \ OEll,] 

(45) 

Other terms/7) ~v~ are zero. 
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The strain interpolation (24) gives: 

ncell 
(b)= ~ Bc~13r(~']e)rDC~76B3,6s(AUe)s = (rle)r(ge)rs(A1Ae)s 

p = l  

(46) 

nceU 
then" (Ke)rs = Z [~a13rba(33'~)B'r&~ 

p = l  
(47) 

The knowledge of the behaviour that links the tensions 
Tll,T 22 with the strains Ell,E22, as defined in section 
"Mechanical behaviour of fibre fabrics", then allows the 

( l l a )  

140 m m  

I 

140 m m  

r 1 /-.- 

280 m m  

0 > 8 0  ° 0_<60 ° 

(1 lb) ( l l c )  

F i g u r e  11 Simulat ion o f  shaping  wi th  a square punch  and die. Definit ion o f  the possible geomet ry  o f  the tools. (a) Geomet ry  o f  the tools. (b) Final computed  
shape o f  the fabric  for  r = 5 mm;  rp = 6 mm;  rm = 5 mm.  (c) Final  computed  shape o f  the fabric  for  r =  10 mm;  rp = 15 mm;  rm = 10 m m  
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] _  160[mm 

360imm 
. . . .  ! 

" ( 1 2 a )  

r = 75 m m f  ~ 

I 

.! 1 

1 2 0  m m  

(12c)  

. . . .  f r om 12b 

Figure 12 Simulation of shaping with ellipsoidal punch and die. Influence of undulations. (a) Geometry of the tools. (b) Final computed shape of the fabric 
without accounting for undulation variations. (c) Final computed shape of the fabric accounting for undulation variations 

calculation of  elementary stiffness matrices (47), (41) and of  
the internal load vector (35). 

Remark 1: The expressions given by (35), (41) and (47) 
are explicit. They give directly the values of the matrix 

terms without any matrix multiplication or intermediary 
integration. It results from it a great numeric efficiency of  the 
formulation. 

Remark 2: In order that the behaviour defined in section 
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"Mechanical  behaviour of fibre fabrics" could be used in 
the previous matrix expressions, it is necessary: 

- -e i ther  to make the assumption that the strains in the 
yarn direction are low enough to make E ~  similar to 
%~. It is the case for the fabrics tested in this paper, 
which strains at breaking point are lower than 2%; 

- - o r  to modify the behaviour expressions in order to link 
T 1], T 22 to EI l ,Ez2 .  

NUMERICAL EXAMPLES 

Drawing with a square punch and die 

An initially square blank made of  a glass fibre fabric is 
shaped into a square box z° (Figure lla). This operation is 
the first stage of  a R.T.M. manufacturing process. A 
pressure equal to 1 MPa is applied on the blank holder, 
and the friction coefficient between the fabric and the tool is 
set to 0.2. The geometry of  the final square box is far from 
being developable. The shape is obtained by deformation of  
the fabric due to large angular variations of  the warp and 
weft directions, especially near the comers of  the box. The 
feasibility of the shaping operation is restricted by the 
limitation of  these angular variations. For the usual glass 
fibre fabrics used in the R.T.M. process Is the maximum 
value of  these angular variations are close to 60 ° . Results of  
simulations of  the shaping operation are shown Figure l lb  
and c for two sets of radius for the punch and the die. These 
radii mainly influence the maximum values of  the angular 
variations of  the yarn directions. The first geometry of  the 
tools (r = 5 mm; rp = 6 ram; rrn = 5 mm) leads to angular 
variations (Figure l lb)  greater than 80°; these values are 
impossible for the fabric. On the opposite, the second 
geometry proposed for the tools (r = 10 mm; rp = 15 mm; 
r m = l0 mm) leads to angular variations smaller than 60 ° 
and the shaping operation appears to be possible. 

This example shows one of the main interest of  the 
simulation tool that allows to verify the feasibility of  a 
drawing operation for a given geometry of  the tool and 
a given fabric, before the manufacturing of  the punch and 
die. An other main aspect is the knowledge of the tensions 
in the yarns which can be high if a significant load is 
applied on the blank holder. In this first example, the 
behaviour of  the fabric is supposed to be only dependent 
on the yarn tensile behaviour. This assumption is restricted 
to fabrics with a very flat geometry of  the weaving. Other 
examples based on this assumption can be found in 
references 19 20 a n d  21 

Drawing with an ellipsoidal punch. Influence of the 
undulation variations 

An initially square blank made of  a glass fibre fabric is 
shaped by an ellipsoidal punch (Figure 12a). The computa- 
tion is first made (Figure 12b) neglecting the influence of  
the undulations and interactions on the fabric behaviour, i.e. 
considering that the tensile behaviour of  a yam is only 

depending on its own tensile strain as shown in Figure 8. 
Figure 12c presents the deformed shape obtained when the 
influence of  the yarn undulation variations are taken into 
account. The constitutive law given by eqn (1) eq. (2) eq. (3) 
eq. (4) eq. (5) is used for the fabric behaviour. The 
coefficients given in eq. (6) and eq. (7) are these of  the plain 
weave glass fibre fabric tested in Figure 6. The difference 
between the two computed shape is shown in Figure 12c. It 
is not very large because the fabric under consideration 
is rather flat. 

SUMMARY AND CONCLUSIONS 

The proposed simulation tool allows to test the feasibility 
of  the drawing of  a given fabric into a given 3D shape. The 
example of the shaping of  a square box shows that a 
geometry can be accepted or not from the computed 
strains in the fabric. The values of  the tensions in the yarns 
can also be checked during the shaping. The simulation is 
based on finite elements made of woven fabric where the 
deformation energy is obtained from those of  each 
elementary woven cell. The behaviour liking up the tension 
state and the stress state includes the effect of  the undulation 
variations of  the yarns when the fabric is deformed. The 
proposed behaviour model has been identified and validated 
from biaxial tensile tests. The influence of  undulation 
variations in a shaping process simulation has been shown. 
It is not very important in the presented example because 
the fabric under consideration is rather flat and because 
the deformations involved by the shaping are large in 
comparison with the domain of  influence of  the undulation 
variations. Other cases are now on study, especially shaping 
simulations using different fabrics. The proposed approach 
is also applied to the simulation of the mechanical 
deformations of  boat sails. 22 In that case, the deformation 
of  the fabric is lower and the influence of  the undulation 
variations is more important. 
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APPENDIX 

A. Components of  the Green-Lagrange  strain tensor in 
h ~° @ h t~° 

Let E = E~h ~° @ h ~° (A1) 

where vectors h ~° define the contravariant base, associated 
to h~0, i.e. 

h,~o.h ~° = 6~ (A2) 

(h l°,h 20 are in the plane defined by h 10,h20) 
Considering an initial elementary vector dx0 which is dx 
after deformation, E is defined by: 

dx.dx - dxo.dx o = 2dxo.E.dx o (A3) 

Let an initial elementary vector be directed by hi0 : dx0 

= dlohlo (A4) 

It is changed into dx ---- dlh~. 
d/2 _ dl 2 

(A3) gives:  2dl2 =hlo.E.hlo 

=hlo.(E~h ~° @ h~°).hlo = E1, 

Therefore, E n  is the measured strain along the material 
direction, initially directed by h 10. 

B. Second Piola Kirchhoff tensor and Lagrangian tensile 
tensor for fabrics 

We are considering a section of the elementary cell, 
h i0  

containing h.20 and therefore its normal no--ilhl01 I. Its 
cross section is noted A'10. 

f hi o 
Considering(10) : A, I o S . ~ d A  o = Tl°hlo (B1) 

T 1° h lo is the load on the cell, along the yarn directed by h 1o. 
In particular, S ~ are the components of S in h~o @ h~o: 

S = $11hlo @ h lo + $22h2o @ h2o + S12hlo @ h2o 

q- $21h20 @ h l o  (B2)  

Then: 

S . h , o = S , l h l o ( h l o . h , O )  + seeh2o(h2o.h,O) 

+ S12hlo(heo.h 1°) + Selhzo(hlo.h 1°) (B3) 

So:  

S .h lo  = S n h l o  + Selheo (B4)  

T h e r e f o r e :  

s 21 = o (BS)  

and 

1 [A, loSlldAo=T~°= f SI]dA o (B6) 
IlhlOll A,o 

Consequently, and if doing the same calculation in the other 
yarn direction, S is in the form used in (11). 

S = Snhlo  @ hm + $22h20 @ h20 (S 11 and S 22 --> 0) 

(B7) 
g ,  

and the component  of the tensile tensor T ~ = -/AloS~dA0 is 

equal to T ~°, modulus of the effort along h 40, which can be 
measured during the experimental study. 
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