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Abstract

An understanding of the complex behaviour of coated woven fabrics is vital for the design of state-of-the-art fabric

structures. Fabric behaviour is typically defined using elastic constants based on plane stress assumptions. This paper

considers two new methods of representing fabric response: (i) use of spline functions to define response surfaces, (ii) use

of stress–strain mean and difference functions (proposed by Day [IASS symposium proceedings: shells, membranes and

space frames 2 (1986) 17]. Both techniques provide direct correlation between stresses and strains, eliminating the

assumption of plane stress. Extensive biaxial fabric testing is proposed to assess the validity of these approaches and

extend their use.

� 2004 Civil-Comp Ltd. and Elsevier Ltd. All rights reserved.
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1. Introduction

Coated woven fabrics are used in a wide range of

structural applications to provide lightweight, architec-

turally striking solutions. The design of fabric structures

is complicated by the complex response of coated woven

fabrics to biaxial loads in the plane of the fabric. A bet-

ter understanding of the behaviour of architectural fab-

rics may significantly reduce levels of uncertainty in the

design process and enable more ambitious architectural

forms to be generated.
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There are two principal types of coated woven fabric:

glass fibre fabric with a PTFE (polytetrafluoroethylene)

coating and polyester fabric with a PVC (poly vinyl

chloride) coating. Both fabrics are composed of an open

weave mesh of orthogonal yarns with a coating which

encloses the mesh on both sides. The characteristics of

the two fabrics are different, but the underlying defor-

mation mechanisms are very similar. Fabric structures

resist environmental loads as tensile stresses in the plane

of the fabric. Under biaxial tensile loading the behaviour

of coated woven fabrics is highly non-linear [1–3]. Geo-

metric non-linearity occurs in the yarns (due to the com-

plex twisted fibre structure) and in the finished fabric

(interaction of orthogonal warp and weft yarns under

biaxial in-plane stress leads to fundamental non-lineari-

ties, compounded by the effect of the coating). Material

non-linearity is evident in the load–extension character-

istics of both the yarn fibres and the fabric coating. The

material response is also time-dependent and hysteretic
Ltd. All rights reserved.

mailto:p.d.gosling@ncl.ac.uk 


Warp:weft = 1:1

0

5

10

15

20

25

30

35

40

45

0 21 3 5 74 6

Strain

St
re

ss
 (k

N
/m

)

Warp:weft = 5:1

0
5

10
15
20

25
30
35
40
45

-1 0-0.5 10.5 2 2.51.5
Strain

St
re

ss
 (k

N
/m

)

Warp Weft

Warp:weft = 1:5

0

5

10

15

20

25

30

35

40

45

-4 -2 0 2 4 6

Strain

St
re

ss
 (k

N
/m

)

(a) (b)

(c)

Fig. 1. Biaxial stress–strain curves for PTFE fabric [4].
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due to the material properties and frictional effects (in-

ter-fibre and inter-yarn friction). Typical stress–strain

curves for PTFE fabric tested at warp to weft stress

ratios of 5:1, 1:1 and 1:5 are reproduced from the work

of Day [4] in Fig. 1a. These graphs show the key features

of the fabric response: sudden changes in gradient (a

and c), gradient reversal (i.e. multiple values of stress

for a given strain) (a) and negative strain (b and c).

These characteristics cause difficulties in establishing a

single function which can fit all of the data and be devel-

oped into a response surface.

Fabric response varies between batches of fabric and

even across the width of a single roll of fabric. The

weave pattern is changed by tension varying during

weaving and coating. Gripping of the edge of the fabric

to move it through the loom causes bowing of the weft

yarns. The exact temperature used to sinter PTFE coat-

ing on to glass fibre fabric affects the shape of the glass

fibres and the level of bond between them at intersec-

tions. These variations in fabric behaviour cause further

difficulties in describing the behaviour using a single

function.

This paper describes two different concepts for the

representation of fabric biaxial behaviour:
(1) The use of Bézier functions, B-splines and NURBS

(Non-uniform Rational B-Splines) to define sur-

faces relating in-plane stresses and strains. Whilst

other response surface representations may be

adopted (including function derivation using

genetic programming [5,6], function parameter

optimisation using neural networks [7,8], and

response surface methodology [9,10]), spline func-

tions provide an intrinsic interpretation of the test

data.

(2) The pioneering work of Day [4] in which mean

stresses and strains are related to stress and strain

differences to formulate equations describing fabric

biaxial behaviour. This approach is extended and

its utility at interpolation between known stress

states is investigated.
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2. Context

2.1. Industry perspective

Biaxial tensile tests are carried out on coated woven

fabrics at several warp to weft stress ratios to determine

the response of the fabric for structural design. Applica-

tion of the test data in determining material response is

typically set within a plane stress framework by:

(1) Linear interpolation of strains between areas of the

structure at known (tested) stress ratios.

(2) Use of elastic constants (two Youngs�s moduli and

one Poisson�s ratio) determined from the secant

moduli of warp and weft stress–strain curves at a

stress ratio and magnitude deemed typical for the

structure. These values remain constant through-

out the structural analysis.

(3) Representation with an elasticity matrix, the gen-

eral form for two-dimensional anisotropic plane

stress involves nine coefficients [3]

½D� ¼
d11 d12 d13

d21 d22 d23

d21 d22 d23

2
64

3
75; ð1Þ

six of which are independent. With orthogonal

weave directions orthotropy can be assumed, hence

d13=d31=d23=d32=0, leaving four independent

variables.

(4) Use of elastic and interaction moduli,

r11

r22

� �
¼

E1111 E1122

E1122 E2222

� �
e11
e22

� �
; ð2Þ

where r=stress, e=strain, E= elastic modulus or

stiffness, subscript 11 denotes the warp direction

and subscript 22 denotes the weft direction. E1111

is the stiffness in the warp direction, E1122 is the

stiffness interaction between warp and weft. Two

Poisson�s ratios are defined,

t12 ¼
E1122

E1111

; ð3Þ

t21 ¼
E1122

E2222

; ð4Þ

for warp-weft and weft-warp interaction, respec-

tively. Stresses and strains are replaced by small

increments Dr and De to linearise an interval of

the non-linear stress–strain curve [11].

For example the three moduli (E1111, E1122, E2222)

can be determined between an assumed prestress

and an upper value. Incremental loading (both pos-

itive and negative) is used to simulate different

environmental loads (e.g. wind and snow) and elas-
tic moduli are assessed at different stages of the

load history. However, in undertaking tests in

two orthogonal directions two values of E1122 are

obtained. Typically these are averaged and re-

ported as a single value.

r11 ¼ ri
11 þ E1111e11 þ E1122e22; ð5Þ

r11 þ Dr11 ¼ ri
11 þ E1111ðe11 þ De11Þ þ E1122e22: ð6Þ

From Eqs. (5) and (6) it follows that,

E1111 ¼
Dr11

De11
; ð7Þ

and combining Eqs. (7) and (5) gives,

E1122 ¼
r11 � ri � Dr11e11

De11

� �
e22

: ð8Þ

Similar expressions are obtained in the orthogonal

direction for which e11 is held constant whilst r22
and e22 are allowed to vary. Hence the independent

determination of E1122 from both equations.

Use of elastic moduli and an implied Poisson�s ratio
makes complete representation of non-linear fabric

behaviour somewhat contrived given no compression

constraints and shear lock-up [2,12]. Linearisation of

parts of the response provide �snapshots� of fabric

behaviour, but are not suitable for computer analysis

without interpolation. Both approaches proposed in this

paper directly relate biaxial stresses to warp and weft

strains and so make no assumption about the state of

stress in the fabric.
2.2. Academic perspective

Kageyama et al. [13] attempted to use a �linearising�
method to describe fabric biaxial response. A bilinear

approximation gave some limited degree of fit to the test

data, but the �change point� needed to be modified for

each stress ratio. Testa and Yu [14] modeled non-linear

biaxial fabric response using strain energy functions

eef ¼ p1A1r
p1�1

f þ A3rwp3 þ p4A4r
p4�1

f rw þ A5rw; ð9Þ

with a similar expression for eew, where r=stress,

e=strain, and subscripts are defined as follows: e=elas-

tic part of response, w=warp direction, f=fill (or weft)

direction. Nine parameters (A1. . .A5 and p1. . .p4) were

used to fit this polynomial, but the resultant function

did not adequately represent the test data. Chen et al.

[15] used a simpler second order polynomial to fit the

stress–strain data. This enabled the tensile modulus at

a given stress level to be derived easily by differentiation.



Fig. 2. Biaxial stress–strain response surfaces [19].
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However, the second order polynomial fit failed to fol-

low discontinuites in the test data.

Lucas [16] developed a technique to fit the non-linear

stress–strain curves of PET (polyethylene terephthalate)

industrial yarns. The stress–strain curve was converted

into a modulus–strain curve to exaggerate non-lineari-

ties, giving distinct peaks rather than subtle changes in

gradient. Three modified Pearson VII lines (or �Pear-
son–Pisa� lines) were used to fit the modulus–strain

curve. This technique was successfully used by Zimliki

et al. [17] to fit a function to the non-linear load–

extension curves of Teijin filaments. However, the deri-

vation of the modulus–strain curve involved calculation

of the gradient of the stress–strain curve by fitting poly-

nomials to a small moving window of data. With widely

spaced data points this polynomial fitting would become

problematic.

Polynomial representations of fabric tensile stress–

strain curves do not sufficiently match the fabric re-

sponse. In particular they tend to smooth rapid changes

in gradient. Bézier curves, B-splines and NURBS [18]

can be used to represent curves with rapid changes in

gradient or discontinuities. Gradient reversal (Fig. 1a)

cannot be represented by a standard polynomial. Spline

functions are parametric and hence this feature can be

represented easily.

Many curve fitting techniques can be extended to cre-

ate surface fits to data with three variables, from simple

linear interpolation through polynomial fitting to com-

plex spline formulations. Surfaces can be formed by a

summation of, for example, y, z curves in the x direc-

tion, or a grid of intersecting y, z and x, z curves. Any

surface fit is therefore reliant on good quality curve fit-

ting. The best fit is usually achieved by minimisation

of the squared error of the curve/surface fit from the

data set.

Minami et al. [19] used response surfaces to represent

biaxial fabric behaviour. Orthogonal stresses (rx,ry)
1

and strains (�x, �y) from biaxial fabric tests form surfaces

in the rx, ry, �x and rx, ry, �y coordinate systems. The

response surfaces shown in Fig. 2 use results for stress

ratios 0:1, 1:1, 2:1, 1:2, 1:0. Elastic constants are estab-

lished using a multi-step linear approximation. The sur-

face is divided into smaller quadrilaterals and for each

quadrilateral the elastic constants are determined. The

size of the small quadrilaterals is critical in ensuring dis-

continuities in the fabric behaviour are accurately

captured.

This paper is set in the context of the work of Day

[4] in which a fundamentally different approach pro-

vides an elegant set of equations to describe fabric re-

sponse. Average stresses and strains are related to
1 x and y denote warp and weft directions, respectively,

throughout.
differences between warp and weft stresses and strains.

An iterative process developed stress–strain relation-

ships applicable to all stress ratios. This was a major

step as it attempted to encapsulate the data for three

different stress ratios in two simultaneous equations. It

is also contrary to the universally adopted plane stress

approach.
3. Bézier curves, B-splines and NURBS

NURBS (Non-Uniform Rational B-Splines) are

mathematical functions used for curve and surface defi-

nition. They are a development of piece-wise Bézier

curves, known as B-splines. This paper considers the

use of all three curve types for response surface genera-

tion. NURBS are used as the basis for surface definition

in a range of three dimensional computer graphics appli-

cations (CAD and animation) and computer controlled

machining, and for data representation in signal

processing applications. The strength of these paramet-

ric functions is an ability to describe any continuous
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curve or surface with a smooth function whilst allowing

local modification of the surface.

3.1. Bézier curves and surfaces

A Bézier curve [20] of degree n is defined by

CðuÞ ¼
Xn

i¼0

Bi;nðuÞP i 0 < u6 1: ð10Þ

The geometric coefficients Pi are called control points.

The basis functions Bi,n are the nth-degree Bernstein pol-

ynomials given by

Bi;nðuÞ ¼
n!

i!ðn� iÞ! u
ið1� uÞn�i

: ð11Þ

To give greater control over the shape of the curve

control point weighting can be introduced. This is

achieved by modifying the Bézier curve function to a ra-

tional function (ie the ratio of two polynomials)

CðuÞ ¼

Pn
i¼0

Bi;nðuÞwiP i

Pn
i¼0

Bi;nðuÞwi

0 < u6 1; ð12Þ

where wi are scalar ‘‘weights’’. The higher the control

point weighting the more it �attracts� the curve (Fig. 3).

Bézier functions can be used to define surfaces uses a

double summation in two orthogonal directions. A

non-rational Bézier surface is defined as

Sðu; vÞ ¼
Xn

i¼0

Xm
j¼0

Bi;nðuÞBj;mðvÞP i;j

" #
0 < u; v6 1; ð13Þ
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Fig. 3. Effect of control point weighting on Bézier curve.
where Bj,m are Bernstein polynomials of the same form

as Bi,n. Exactly as before this function can be rewritten

as a ratio of two polynomials with control point weight-

ing introduced to give a rational Bézier surface

Sðu; vÞ ¼

Pn
i¼0

Pm
j¼0

Bi;nðuÞBj;mðvÞwiP i;j

" #

Pn
i¼0

Pm
j¼0

Bi;nðuÞBj;mðvÞwi

" # 0 < u; v6 1:

ð14Þ
3.2. B-splines

For more complex discontinuous curves a B-spline (a

piecewise Bézier curve) is defined [18,20]

CðuÞ ¼
Xn

i¼0

Ni;pP i a6 u6 b: ð15Þ

The B-spline basis functions Ni,p can be defined in

several ways; as divided differences of truncated power

functions, and using blossoming and recurrence for-

mula. Recurrence tends to be used since it is well suited

to computer implementation. A B-spline basis function

of p-degree is defined recursively as

Ni;0ðuÞ ¼ 1 if ui 6 u < uiþ1

¼ 0 otherwise
ð16Þ

Ni;pðuÞ ¼
u� ui

uiþp � ui
N i;p�1ðuÞ þ

uiþpþ1 � u
uiþpþ1 � uiþ1

Niþ1;p�1ðuÞ:

ð17Þ

The B-spline has breakpoints called knots. The knot

vector U is an ascending sequence

U ¼ ðu0; . . . ; umÞ: ð18Þ

A simple B-spline has a uniform, periodic knot vector

U=(1,2,3. . .p). However, non-periodic, non-uniform,

knot vectors allow more control of the shape of the

curve

U ¼
�
a; . . . a|fflfflffl{zfflfflffl}
pþ1 terms

; upþ1; . . . ; um�pþ1; b; . . . ; b|fflfflfflffl{zfflfflfflffl}
pþ1 terms

�
: ð19Þ

For example coincident knots can be used to specify

end conditions and facilitate the introduction of

discontinuities.

3.3. NURBS

NURBS [21,22], are Non-Uniform Rational B-

Splines; B-splines with non-uniform knot vectors ex-

pressed as a ratio of two functions. The non-uniform
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B-spline (Eqs. (15)–(19)) is modified in the same way as

the Bézier function––a rational function is formed to

facilitate the introduction of control point weighting

CðuÞ ¼

Pn
i¼0

Ni;pðuÞwiP i

Pn
i¼0

Ni;pðuÞwi

a6 u6 b: ð20Þ

Control point weighting gives further local control

over curve shape. With modification of control point

locations and weights a broad range of curves can be

defined. Finally the NURBS curve can be summed in

a third dimension to give a NURBS surface. The knot

vector becomes a two-dimensional control net:

Sðu; vÞ ¼

Pn
i¼0

Pm
j¼0

wi;jN i;pðuÞNj;qðvÞP i;j

Pn
i¼0

Pm
j¼0

wi;jN i;pðuÞNj;qðvÞ
; ð21Þ

where u, v are parameters, Ni,p,Nj,q are basis functions,

Pi,j are control points, wi,j are control point weights

and U,V are knot vectors.

It is interesting to note that this summation can be

continued to any number of dimensions. The resulting

function becomes difficult to visualise, but can poten-

tially be used to describe the relationship between any

number of independent variables with non-linear rela-

tionships. For example, to relate four variables a sum-

mation of NURBS surfaces could be used (a NURBS

solid)

Sðu; v;wÞ ¼

Pn
i¼0

Pm
j¼0

Pl
k¼0

wi;j;kN i;pðuÞNj;qðvÞNk;rðwÞP i;j;k

Pn
i¼0

Pm
j¼0

Pl
k¼0

wi;j;kN i;pðuÞNj;qðvÞNk;rðwÞ
:

ð22Þ

This extension to multivariate representation can

equally be applied to Bézier and B-spline functions.

3.4. Response surface generation for fabric test data

The following response curve and surface generation

is based on data from the work of Day [4]. Surfaces gen-

erated using Bézier and spline functions are essentially

summations of many curves. It is therefore useful to as-

sess a function�s capability for representation of non-lin-

ear biaxial test curves before attempting to develop a

response surface. A suitable combination of control

point locations and weights fits a single Bézier curve to

non-linear data points with multiple gradient reversals

(e.g. Fig. 4, data from Fig. 1a, �warp curve�).
For more contorted test data the number of control

points can be increased until all data are successfully
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interpolated. The same procedure can be used to fit a

surface to data with three variables. To simplify calcula-

tion a regular grid of control points is used (a control

net) and the location of control points is only modified

in the z direction. The control point weights can also

be varied (Fig. 5). It is important to note that the circu-

lar points shown are the control net and not the data

points. The data points would lie on the surface once

optimisation had been carried out [In Fig. 5 no data

points are shown].

Bézier surfaces are defined by continuous functions

with easily obtainable derivatives, making them highly

suitable for inclusion in finite element structural analysis

software. Two surfaces are required to describe fabric

behaviour under biaxial tensile stress; one for warp

strain and one for weft strain (Fig. 6).

Use of NURBS functions gives greater control over

the curve or surface shape. In particular, the non-uni-

form knot vector allows discontinuities in the response

to be included. This is required if the fabric stress–strain

response is discontinuous; if the change in curvature is

rapid but not instantaneous then a Bézier representation

will suffice. Discontinuities in the response surface are

undesirable for non-linear finite element analysis as they

could lead to numerical instabilities.
2 Day�s method of determining f 3 was carried out, but the

resultant curve fits were poor compared to those achieved with

f 3(ea)=0.
3 The notation has been modified in line with this paper, and

some corrections have been made to signs and significant
4. Pioneering work of Day [4]

Day�s [4] work is based on the representation of non-

linear stress–strain behaviour in soil mechanics [23] in

which the mean and difference of the principal strains

are related. Because fabric shear stiffness is low the

material can be treated as orthotropic. Hence the princi-

pal stresses lie in warp and weft directions and the shear

stresses can be dealt with separately, such that,

ra ¼
ðrx þ ryÞ

2
; ð23Þ

ea ¼
ðex þ eyÞ

2
; ð24Þ

T ¼ ðry � rxÞ
2

; ð25Þ

g ¼ ðex � eyÞ
2

; ð26Þ

ra ¼ f 1ðeaÞ þ f 2ðgÞ; ð27Þ

T ¼ f 3ðeaÞ þ f 4ðgÞ; ð28Þ

where rx=warp stress, ry=weft stress, rxy=shear stress,

ex=warp strain, ey=weft strain, exy=shear strain and f1

to f 4 are functions to be determined. Shear stress and
strain are related by an independent linear function f 5

[4],

rxy ¼ f 5ðexyÞ: ð29Þ

Discontinuities in the test results made reproduction

of the curves impossible using algebraic functions (e.g.

polynomials) for f1 to f 4 [4]. Therefore �arbitrary�
stress–strain curves have been defined by a set of points

with linear interpolation. This leaves a non-linear curve

fitting problem if a differentiable function is required to

predict a tangent modulus under a plane stress

assumption.

4.1. Application to fabric test data

In this paper both polynomials and arbitrary points

with linear interpolation have been used for functions

f1 to f 4. Day�s [4] original test data have been used

(Fig. 1 and Table 1). Because of the interaction between

terms in the four functions, direct derivation is not pos-

sible and an iterative approach is required [4]. The start-

ing point is the determination of f 1 in Eq. (27). For a

biaxial stress ratio of 1:1, the stress difference (g) is zero,

hence,

ra ¼ f 1ðeaÞ for 1 : 1 stress ratio: ð30Þ

Values for mean stress (ra, equals applied stress for

1:1 stress ratio) and mean strain (ea) can be taken from

the 1:1 warp and weft curves (Fig. 1a and Table 1), giv-

ing a first approximation to f 1. Fig. 7 shows the data

points used to define f 1 fitted with both linear interpola-

tion and a fourth order polynomial. A similar process is

used to determine the relationship

T ¼ f 3ðeaÞ; ð31Þ

again using the 1:1 test data [4]. This is difficult to follow

as T (stress difference) is, by definition, zero for a 1:1

stress ratio. Day considers what the stress difference

would be if the warp and weft strains were equal and

set to a given value. In this paper it is argued that for

a 1:1 stress ratio it is implicit that the stress difference

is zero and and hence f 3(g) must be zero for all values

of T. 2

The functions f 2(g) and f 4(g) are obtained using data

from the 5:1 and 1:5 test curves (Fig. 1b and c and Table

1). The following example is taken from Day�s paper

[4]. 3
figures.
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Table 1

Test data and determination of functions [4]

Stress

ratio

rx
(kN/m)

ry
(kN/m)

ex (%) ey (%) ra
(kN/m)

T

(kN/m)

ea (%) g (%) Values of ra
from f1(ea)
(kN/m)

Values for

f2(g) (f2(g)=ra�f1(ea))
(kN/m)

1:1 0 0 0 0 0 0 0 0 – –

1:1 2.5 2.5 0.53 1.93 2.5 0 0.0123 �0.007 – –

1:1 5 5 0.52 3.06 5 0 0.0179 �0.0127 – –

1:1 10 10 0.5 3.99 10 0 0.0225 �0.0175 – –

1:1 40 40 1.26 5.74 40 0 0.035 �0.0224 – –

5:1 0 0 0 0 0 0 0 0 0.00 0.00

5:1 2.5 0.5 0.11 �0.05 1.5 �1 0.0003 0.0008 0.23 1.27

5:1 5 1 0.27 �0.08 3 �2 0.001 0.00175 0.66 2.34

5:1 10 2 0.53 �0.04 6 �4 0.0025 0.00285 1.39 4.61

5:1 40 8 2.01 �0.01 24 �16 0.01 0.0101 2.34 21.66

1:5 0 0 0 0 0 0 0 0 0.00 0.00

1:5 0.5 2.5 �0.17 1.27 1.5 1 0.0055 �0.0072 2.07 �0.57

1:5 1 5 �0.78 2.17 3 2 0.007 �0.0148 2.18 0.82

1:5 2 10 �1.8 3.17 6 4 0.0069 �0.0249 2.17 3.83

1:5 8 40 �2.67 4.77 24 16 0.0105 �0.0372 2.39 21.61

y = -5E+07x4 + 5E+06x3 - 99852x2 + 782.31x

0

5

10

15

20

25

30

35

40

45

0 0.01 0.02 0.03 0.04
a (mean strain)

σ
a  

(m
ea

n 
st

re
ss

) (
kN

/m
)

Multi-linear
Polynomial

Fig. 7. Function f1 from 1:1 test data.
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Consider the 5:1 curve: at rx=10 kN/m, ry=2 kN/m,

ex=�0.0004 and ey=0.0053. Then

ra ¼
ðrx þ ryÞ

2
¼ 6 kN=m ¼ r0

a ð32Þ

ea ¼
ðex þ eyÞ

2
¼ 0:0023; ð33Þ

T ¼ ðry � rxÞ
2

¼ �4 kN=m; ð34Þ

g ¼ ðex � eyÞ
2

¼ 0:0027: ð35Þ

For this value of ea there will be a value of ra from

ra= f 1(ea). Using the polynomial fit to f 1 (Fig. 7) gives

ra=1.39 kN/m (not 6 as given by Eq. (32)). This differ-

ence between ra and r0
a provides data for the function
f 2. Fig. 8 shows several curve fits to the f 2 data: in 8a

the data has been linearly interpolated and fit with a

two part second order polynomial, 8b shows a single

fourth order polynomial. Determination of f 4 is simpli-

fied by the fact that f 3=0, hence:

T ¼ f 4ðgÞ: ð36Þ

This function can be determined directly from the 1:5

and 5:1 data, and is shown in Fig. 9 with linear interpo-

lation between points and with a fourth order polyno-
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mial. Day�s original results, and the values used to deter-

mine functions f 1 to f 4 are given in Table 1. A unit

square of fabric was simulated, subjected to biaxial

stresses with the stress–strain behaviour of the element

determined by his stress–strain mean-difference func-

tions [4]. An iterative process allowed the arbitrary

curves defining functions f 1 to f 4 to be modified to min-

imise the discrepancies between the computer prediction

and test results. The results following this iterative proc-

ess are shown in Fig. 10. Without any iterative modifica-

tion of the functions shown in Figs. 7–9 the predicted

response compares well with the test results, in particu-

lar for the polynomial functions where three polynomi-

als are being used to represent six non-linear

relationships. Predicted response and original test results

are shown in Fig. 11 (based on linear interpolation be-

tween values) and Fig. 12 (using polynomial functions).

With modification of the multi-linear curves and the pol-

ynomial functions (or using different function forms) a

very good representation of the original data could be

achieved (as seen in Fig. 10). This optimisation has yet

to be carried out.
5. Quality of response representations

5.1. Bézier functions, B-splines and NURBS

5.1.1. A unique solution?

Fig. 4 shows a Bézier curve fit to typical fabric stress–

strain data. The ability to fit these data points which

cannot be readily represented by a polynomial demon-

strates the utility of Bézier curves. A different curve fit

to identical data using the same Bézier function can be

obtained (Fig. 13, �Curve 2� defined by �Control polygon
2�). This has been superimposed on the previous curve

(from Fig. 4) which is labelled �Curve 1�. [Note that

points a and e are data points and are also the end points

of both control polygons, and all control points at these

locations have a weight of 1]. Two combinations of con-

trol point locations and weights give equally valid curves
which interpolate the data set (Fig. 13). Both curves

have been fit by trial and error, but a simple routine to

minimise the mean square offset from the data points

would achieve an exact fit. By varying control point

locations and weights a large family of interpolating

curves can be generated. All of these curves have a mean

square offset from the data of zero. Hence an optimisa-

tion routine based solely on this criterion would not be

able to distinguish between them. The differences be-

tween these interpolating functions can be significant

(Fig. 13). The deviation of the curves between points d

and e clearly demonstrates this difference, highlighting

that the response surfaces in Fig. 6 do not provide a reli-

able model of fabric behaviour. They are arbitrary sur-

faces that interpolate the data points. Further data is

required to establish which curve or surface best repre-

sents the fabric response. However, with additional data

the same uncertainty will occur between data points, al-

beit on a smaller scale. This non-uniqueness relative to a

fixed data set is a fundamental problem with Bézier

curves, B-splines and NURBS in their basic form. These

functions are useful for generating a smooth, differenti-

able function that interpolates the data, but additional

criteria are required to optimise the fit between data

points.

In addition to minimisation of the square of the mean

error, a combination of two further criteria (and specifi-

cation of a weighting parameter) would achieve a unique

fit: minimisation of the deviation of the curve from the

straight line joining consecutive points and minimisation

of the rate of change of curvature. A single parameter

would provide the weighting attributed to these two con-

ditions. To avoid the need for calibration tests to deter-

mine this parameter more advanced optimisation

methods could be used. For example, the gradient

(and rate of change of gradient) of a polynomial fit to

a moving window of data could be used as a basis for

the gradient of the interpolating Bézier function. How-

ever, with widely spaced non-linear data this polynomial

fit could present difficulties.

5.1.2. Discontinuity and local control

In computer graphics applications the NURBS non-

uniform knot vector is utilised to model discontinuities

(to define sharp edges) and hence to facilitate detailed

local control of the surface shape. Fabric stress–strain

curves are described as �discontinuous� in that they have

distinct non-linearities (Fig. 1) and hence are difficult to

model with a polynomial function [14,15]. A NURBS

representation is required if these non-linearities include

an instantaneous change in curvature. Available data

from literature [4,14,15,12,24], and from industry either

suggest that the stress–strain curves are continuous, or

give too few points to make an assessment. For typical

engineering materials (e.g. steel) there are no discontinu-

ities in the stress–strain curve until failure. However the



Fig. 10. Day�s results and prediction from model [4].
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deformation mechanism of woven fabrics under biaxial

load are complex and geometric effects could lead to

discontinuity.
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5.2. Day’s method [4]

5.2.1. Analysis of mean and difference functions

It is useful to understand why the three functions f 1,

f 2 and f 4 produce reasonably good curve fits to the test

data. For example, in,

ra ¼ f 1ðeaÞ þ f 2ðgÞ;

at a stress ratio of 1:1 f 1(ea) is large compared to f 2(g)

and therefore f 1(ea) dominates the response. This gives

a good curve fit as f 1(ea) was determined from 1:1 test

data. For 1:5 and 5:1 ratios f 1(ea) is small compared

to f 2(g) and hence f 2(g) dominates the response. Again

a good fit is achieved as f 2(g) was determined from 1:5

and 5:1 test data.

Furthermore, it has been noted with respect to,

T ¼ f 3ðeaÞ þ f 4ðgÞ;

that f 3(ea) must equal zero for a stress ratio of 1:1. This

leaves T= f 4(g). For a stress ratio of 1:1, f 4(g) is small

compared to ra. This provides a good fit as f 4(g)=0

(hence T=stress difference=0) would give the best fit

to the 1:1 curve. For the 1:5 and 5:1 ratios f 4(g) is deter-

mined from the relevant test data, and so achieves a

good fit to the test curves.
5.2.2. Prediction of stress–strain behaviour for intermedi-

ate stress ratios

For Day�s stress–strain mean and difference functions

[4] to be suitable for the representation of fabric behav-

iour they must successfully predict the fabric strains for

stress ratios other than those tested. Day�s work makes

no mention of how well intermediate stress states are

predicted, or how stable the functions are in these areas.

In the absence of additional test data, stress–strain

curves for stress ratios of 2:5 and 5:2 have been derived

by linear interpolation between the 1:5, 5:1 and 5:1 test

data with the aim of further defining the response func-

tions. These 2:5 and 5:2 curves are not expected to accu-

rately represent the fabric behaviour, but they do

represent a feasible response which can be used to test

the validity of Day�s method. Fig. 14 shows values of

ra and g (=strain difference/2) for stress ratios 1:5, 2:5,

5:2 and 5:1.

These four curves cannot be encapsulated in a single

function, as was possible for the 1:5 and 5:1 curves.

Rather than further defining a single curve, test data

for additional stress ratios provide a scatter of points

(Fig. 14). Consideration of the physical meaning of ra
and g suggests that this data scattering is fundamental

and not due solely to the linearly interpolated 2:5 and

5:2 curves. For example equal strains in both warp
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and weft directions (i.e. g=0) could be achieved with

numerous pairs of applied stresses. This would give

many values of mean stress (ra) which will all lie on

the vertical axis. Similarly other stress states will popu-

late the graph in Fig. 14 with a scatter of points.

The behaviour of the response functions f 1, f 2 and f 4

at intermediate stress ratios can be examined by plotting
surfaces defined by Eqs. (27) and (28). Figs. 15 and 16

show rx, ry, ex and rx, ry, ey response surfaces respec-

tively. The surface is shown as a cloud of hollow circles,

four views of each surface are given to make the shape of

the function clear. Test data points are shown by solid

circles. The surfaces shown are based on multi-linear re-

sponse functions, the polynomial functions provide very

similar surfaces.



Fig. 15. Warp response surface from mean-difference functions.
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These figures show the response surface providing a

good fit to all data points, as already seen in Figs. 11

and 12. However, between data points the response sur-

face shape gives highly unpredictable results. Useful

comparison can be made with surfaces generated using

linear interpolation (Fig. 2) and with an interpolating

spline (Fig. 6). Points �A� and �B� are data points on

the warp surface (Fig. 15)

A: rx=40, ry=40, ex=1.26%

B: rx=40, ry=8, ex=2.01%

Point C (not shown) lies between �A� and �B�:
C: rx=40, ry=20, ex=?

It is reasonable to assume that the value of ex lies be-
tween 1.26% and 2.01%. The value given by the mean

and difference response functions shown in Fig. 15 is

�3.18%.

5.3. Incorporation of other aspects of fabric behaviour

Representation of biaxial test data does not fully de-

scribe coated woven fabric behaviour. Shear is often ne-
glected, Day [4] assumed shear stiffness was low,

uncoupled to stress–strain behaviour, and linear elastic.

However a thorough treatment of woven fabric shear

behaviour shows it be non-linear, hysteretic and discon-

tinuous [25,26]. The response of coated woven fabrics to

biaxial loads is more complex than is shown by Day�s re-
sults (Fig. 1), which only give the response to initial

loading. The following factors are all important in deter-

mining the response:

(1) Load history (mechanically conditioned behaviour

achieved by cyclic load regimes differs from initial

behaviour).

(2) Rate of loading.

(3) Increasing or decreasing load.

(4) Temperature.

(5) Creep and relaxation.

Bézier functions and NURBS have potential to be ex-

tended to describe test results including any of these fac-

tors. All of these factors have a non-linear influence on



Fig. 16. Weft response surface from mean-difference functions.
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fabric behaviour, hence spline functions are well suited

to their representation. Variation in shear modulus is

discontinuous and so may require NURBS. Eq. (22)

shows how NURBS can be extended to describe four

independent variables. The summation can be repeated

to include any number of independent variables. The re-

sponse is difficult to visualise, but will provide a single

function that describes any number of variables.

Day�s [4] methodology of relating stress and strain

means and differences is not as readily applied to other

factors affecting the response. Further work is proposed

on the modification of Day�s formulae to include addi-

tional variables to account for other aspects affecting

fabric response.

Previous work [2–4,13,14,19] has looked at fitting a

curve or surface to a single set of fabric biaxial test data.

The behaviour of fabric is inherently variable due to var-

ious stages of the weaving and coating processes. To

fully understand the bounds of the response of a fabric,
multiple tests should be carried out on different batches

and with samples taken from different parts of the roll.

Upper and lower bounding surfaces could be fit to the

resulting scattered data points. These two surfaces could

be used for structural analysis––upper or lower bounds

used as appropriate to give a conservative design.
6. Conclusions and recommendations

Two techniques have been presented in this paper

that provide alternatives to plane stress formulations

for coated woven fabric behaviour. Both methods di-

rectly relate biaxial stresses to warp and weft strains,

thus avoiding plane stress assumptions which may not

apply to coated woven fabric behaviour.

Response surfaces defined with rational Bézier func-

tions can model data with rapid changes in gradient

and multiple gradient reversals (Fig. 6). Multiple optimi-
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sation criteria are required to achieve a unique solution

(Figs. 4 and 13). NURBS have the same benefits and

drawbacks as Bézier functions, with the additional abil-

ity to represent discontinuities in the data. Further test-

ing is required to determine whether coated woven fabric

stress–strain response exhibits true discontinuities and

hence requires B-spline or NURBS representation. Biax-

ial fabric tests with frequent readings would determine

the shape of the stress–strain curve and identify discon-

tinuities. This type of data could also be used for calibra-

tion or validation of Bézier function optimisation

routines.

Day [4] proposed a novel method of using relation-

ships between stress and strain means and differences to

represent fabric biaxial behaviour. This elegant method

provides a good fit to non-linear test data for three stress

ratios using polynomials or multi-linear functions. Iter-

ative analysis of a simulated test piece and function

modification optimise the fit. The use of mean and differ-

ence formulae enables six non-linear curves to be de-

scribed by three polynomial functions. Further biaxial

tests need to be undertaken to determine whether more

than three stress ratios can be used to further inform

the mean and difference functions and to provide evi-

dence that the functions lead to meaningful interpola-

tion between the tested stress states.
Acknowledgment

This research is supported by the EPSRC (Engineer-

ing and Physical Sciences Research Council, award

number 01301420), Arup and Architen-Landrell.
References

[1] Peirce FT. The geometry of cloth structure. J Textile Inst

1937;28:81–8.

[2] Skelton J. Mechanical properties of coated fabrics. In:

Hearle J, Thwaites J, Amirbayat J, Rijn A, editors.
Mechanics of Flexible Fibre Assemblies. Nether-

lands: Sijthoff & Noordhoff; 1980. p. 461–9.

[3] Tan KY, Barnes MR. Numerical representation of stress–

strain relations for coated fabrics. In: IstructE symposium

on design of air supported structures, Bristol. 1984. p. 162–

74.

[4] Day AS. Stress strain equations for non-linear behaviour

of coated woven fabrics. IASS symposium proceedings:

shells, membranes and space frames, Osaka, 2. Amster-

dam: Elsevier; 1986. p. 17–24.

[5] Koza JR. Genetic programming on the programming of

computers by means of natural selection. Cambridge,

Massachusetts, USA: The MIT Press; 1992.

[6] Brunetti A. Fast and precise genetic algorithm for a

non-linear fitting problem. Comput Phys Commun

2000;124(2–3):204–11.

[7] Hutchinson A. Algorithmic learning. Graduate texts in

computer science. Oxford: Clarendon Press; 1994.

[8] Masters T. Advanced algorithms for neural networks, a

C++ sourcebook. USA: John Wiley & Sons Inc.; 1995.

[9] Myers RH. Response surface methodology––current status

and future directions. J Qual Technol 1998;31(1):30–44.

[10] Myers RH, Khuri AI, Carter WH. Response surface meth-

odology: 1966–1988. Technometrics 1989;31(2):137– 57.

[11] Blum R. Approval for structural membranes proposal

TEXT. 14–15, Internet, accessed November 2002. <http://

www.tensinet.com/documents/working/Approval>.

[12] Skelton J. The biaxial stress–strain behavior of fabrics for

air supported tents. J Mater 1971;6(3):656–82.

[13] Kageyama M, Kawabata S, Niwa M. The validity of a

linearizing method for predicting the biaxial-extension

properties of fabrics. J Textile Inst 1988;79:543–65.

[14] Testa RB, Yu LM. Stress-strain relation for coated fabrics.

J Eng Mech 1989;113(11):1361–646.

[15] Chen Y, Lloyd DW, Harlock SC. Mechanical character-

istics of coated fabrics. J Textile Inst 1995;86(4):690–700.

[16] Lucas LJ. Mathematical fitting of modulus–strain curves of

PET industrial yarns. Textile Res J 1983;53:771–7.

[17] Zimliki DA, Kennedy JM, Hirt DE, Reese GP. Determin-

ing mechanical properties of yarns and two-ply cords from

single filament data Part II: comparing model and exper-

imental results for PET. Textile Res J 2000;70(12):1097–

105.

[18] Dierckx P. Curve and surface fitting with splines. Oxford:

Oxford Science Publications, Clarendon Press; 1993.

http://www.tensinet.com/documents/working/Approval
http://www.tensinet.com/documents/working/Approval

	Direct stress ndash strain representation for coated woven fabrics
	Introduction
	Context
	Industry perspective
	Academic perspective

	B eacute zier curves, B-splines and NURBS
	B eacute zier curves and surfaces
	B-splines
	NURBS
	Response surface generation for fabric test data

	Pioneering work of Day [4]
	Application to fabric test data

	Quality of response representations
	B eacute zier functions, B-splines and NURBS
	A unique solution?
	Discontinuity and local control

	Day’s method [4]
	Analysis of mean and difference functions
	Prediction of stress ndash strain behaviour for intermediate stress ratios

	Incorporation of other aspects of fabric behaviour

	Acknowledgment
	References


