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Abstract

A mesoscopic discrete model of fabric has been developed, accounting for the yarn–yarn interactions occurring at the
yarn crossing points. The fabric yarns, described in their initial state by a Fourier series development, are discretized into
elastic straight bars represented by stretching springs, and connected at frictionless hinges by rotational springs. In the first
part of the paper, the behavior under uniaxial tension of a single yarn has been investigated, and the impact of the inter-
actions of the transverse yarns has been quantitatively assessed. The consideration of the yarn interactions is extended in
this second part at the scale of the whole network of interwoven yarns, under uniaxial and biaxial loading conditions. The
effect of the transverse yarns properties under uniaxial tension is evidenced, as well as the impact of the biaxial loading
ratio.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Woven structures; Discrete models; Traction curve; Yarn–yarn interactions; Uniaxial and biaxial extensions
1. Analysis of woven fabric behavior under uniaxial extension

We have developed a discrete mass-spring model of the mesoscopic mechanical behavior of a woven struc-
ture, taking into account the yarn–yarn interactions at the mesoscopic scale. From the literature review given
in Part I, we can observe that few works deal with discrete modeling of woven structures: the works by Provot
(1995) and Magno and Lutz (2002), fall within this kind of approach.

The stiffening effect of the yarn–yarn interactions on the fabric mechanical behavior has been evidenced,
and the traction curve of a single yarn has been simulated, reproducing thereby the observed J-shaped curve.
0093-6413/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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The deformation mechanisms of the yarn consists of flexional contribution, being attributed to a change of its
undulation and an extension; the flexional displacement is shown to tend towards a saturation value, whereas
the extensional displacement monotonously increases vs. the applied traction load. This discrete methodology
is further extended in this second part to analyze the structural behavior at the scale of the woven structures
under uniaxial and biaxial loadings.

The set of intertwined yarns X is decomposed into the assembly of two sub-mechanical systems (Fig. 1),
namely the set of warp yarns, Xwa, being in interaction with the set of weft Xwe, here considered as an external
(sub-mechanical) system.

In order to study the effect of the parameters of the structure (applied loads, yarns’ mechanical properties)
on the extension behavior of the woven structure, the mechanical behavior of the mechanical system X is first
analyzed in the warp direction (x-direction). For that purpose, the total potential energy associated to the
warp yarns’ system Xwa is first established. Under the extension loads, the deformed shape of a warp yarn
of index k is assumed to retain its initial periodical shape, expressed as the following Fourier series:
wk
waðxÞ ¼

XNwe

n¼1

awa
n;k sin ðk � 1Þpþ n

px
Lwa

� �
ð1Þ
Under the effect of the loads Pwa and Pwe applied, respectively in the warp and weft directions (supposed to
be uniformly distributed along the edge nodes), an undulation transfer due to the yarn–yarn interaction occurs
at the contact points; this undulation transfer process is followed by a lateral displacement of the contact
points (Fig. 6, Part I). The displacement continuity occurring at the crossing points labeled by the set of indi-
ces (j,k) then expresses as (see relation (23) of Part I for the case of a single yarn)
wj;k
s�we ¼ wj;k

so�we þ wj;k
s�wa � wj;k

so�wa ð2Þ
where j is the index of the weft yarn and k the index of the warp yarn. From the relation (20) of Part I (ob-
tained from the application of beam theory of Timoshenko (1947)), which gives the expression of the reaction
force exerted by the warp yarns on the weft yarn in the case of a biaxial extension and using the previous rela-
tion (1), we get
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The action–reaction principle further gives
Rj;k
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The work of the reaction force exerted by a weft yarn of index j on the warp yarn of index k, occurring at
the interlacing point (j,k), expresses as
wa

we

wa we

Fig. 1. Woven structure made of two sets of intertwined yarns.
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This expression shows the influence of the transversal yarns characteristics EIwe, Lwe
p , wso�we, ws�we and of

the coefficient awe ¼ P we

P we
cr

– which quantifies the interaction between the two sub-mechanical systems Xwa and
Xwe during the loading – on the work of the reaction force exerted on the warp yarn. Accordingly, the total
work of the reaction forces exerted on a warp yarn of index k is given by the sum
W k
reaction forces ¼

XNwe

j¼1

W Rj;k
we=wa

ð6Þ
Thus, we get
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The external work W k
ext associated to the warp yarn of index k is defined by
W k
ext ¼ W k

traction þ W k
gr þ W k

reaction forces ð8Þ
where

• W k
traction is the work of the traction load Pwa,

• W k
gr is the work of the gravity load,

• W k
reaction forces is the work of the reaction forces at the contact points.

The strain energy Uk
wa related to the same warp yarn, which takes into account the flexional and the exten-

sional deformation, is expressed in terms of the rotational and extensional parameters (respectively the vari-
ables wk

x;i and uk
i , see Fig. 1 in Part I), thus
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The potential energy V k
wa related to the warp yarn, is then deduced from an analysis similar to that pre-

sented in the first part of the paper, using here the double indexing notation, as
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The total potential energy associated to the sub-mechanical system Xwa is finally calculated as the sum of
the potential energies of each warp yarn: using Eq. (10), we get
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V k ð11Þ
or in developed form,
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This expression will be used in the sequel to analyze the mechanical behavior of the woven structure, under
uniaxial and biaxial behavior.
2. Tensile behavior of the woven structure: traction curve

2.1. Energy description

Each node (with global index i) of warp yarn having the index k is attached the discrete kinematic variables
wj;k
s�wa ¼ wk

i

sin wk
x;i

� �
¼ wk

i �wk
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8<
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2N we

ð13Þ
For small rotations, the relation (13) linking the discrete parameters wk
x;i and wk

i can be approximated by the
following expression:
wk
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ð14Þ
where the discrete lateral displacements wk
i are obtained from the discretization of the continuous shape of the

k-warp yarn, given by the equation
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Substituting Eqs. (14), (15) into expression (12), the total potential energy V become a function of the Fou-

rier coefficients awa
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and of the yarn nodal extensions uk
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We assume that the woven structure is fixed at the side x = 0, which implies the condition
uk
1 ¼ 0

� �
k2½1;...;Nwa�

ð17Þ
The equilibrium state of the sub-mechanical system Xwa is characterized by the minimum of the total poten-
tial energy V; thereby, the first variations of the total potential energy vanish, leading to the following system
of algebraic equations:
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2.2. Fabric under uniaxial extension

2.2.1. Fabric tensile curves

A uniaxial traction is supposed to be exerted in the sole warp direction: this means that in the total potential
energy (expression (12)), we set the coefficient awe = 0. The traction curve is generated as the relationship
between the load Pwa vs. the end nodal displacement (displacement of the free edge x = Lwa) along the x-direc-
tion. We notice that the traction load Pwa is defined as a punctual force applied at the end points of each warp
yarn (see Fig. 5 of Part I). The input data correspond to carbon fibers reinforced fabric (SNECMA, 2002),
already used in the first part of the paper.

As for the single yarn traction, the obtained simulated J-shape of the fabric tensile response (Fig. 2) is in
good agreement with observed experimental results (Boisse et al., 1997). We can distinguish two nearly linear
parts, associated to different deformation mechanisms: the first part (up to an applied force of about 0.01 N) is
due to the yarn–yarn undulation transfer, traducing a decrease of the warp undulation. At the end of the
transfer of undulation (the structure is nearly blocked regarding the variations of undulation), a stiffer
response represented by the non-linear part is obtained, due mostly to the extension of the yarn.
2.2.2. Effect of yarns mechanical properties

The reaction load at the interlacing points depends on the weft mechanical parameter, as evidenced by Eq.
(4). In order to assess the effect of the mechanical and geometrical characteristics on the fabric traction behav-
ior, simulations of the traction behavior of the fabric in the warp direction are performed for different values
of the transverse yarns rigidity. Fig. 3 shows that a stiffer transverse yarn increases the reaction forces, thus
leads to a stiffer response of the warp (Fig. 4).

At the end of this stiffening, the reaction force tends toward a limit value, which indicates that the yarn has
exhausted its possibilities of undulation changes.
2.3. Fabric under biaxial extension: analysis of the biaxial behavior

We analyze the effect of the transverse extension load Pwe on the fabric mechanical behavior, in the warp
direction (x-direction). We can deduce from Eq. (4) that the reaction force occurring at the interlacing points
varies with Pwe, thus leads to different fabric traction responses.
Fig. 2. Uniaxial traction curve.



Fig. 4. Fabric extension in the warp direction. Effect of the weft modulus.

Fig. 3. Variation of the reaction force. Effect of warp and weft modulus.
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2.3.1. Fabric extension response

The followings values of the extension load Pwe are considered (viewed here as a parameter):
P we ¼ 0:0P wa

P we ¼ 0:1P wa

P we ¼ 0:2P wa

P we ¼ 0:3P wa

8>>><
>>>:

ð19Þ
The results (Fig. 5) show that increasing the transverse extension load Pwe leads to a stiffer response of the
fabric: this is due to the decrease of the yarn–yarn undulation transfer capacity. Indeed, from Eq. (4), we
remark that as Pwe increases, the reaction load Rwe/wa increases, which affects the yarn–yarn undulation trans-
fer, thus leading to a stiffer response. We further record the variation of the reaction load Rwe/wa, occurring at
the crossing points, vs. the applied extension load Pwa (in the x-direction), considering different values of Pwe

(given in (19)), see Fig. 6.
The reaction force Rwe/wa increases with the transverse extension load Pwe. Although the reaction load

Rwe/wa tends toward a limit value in the case of an uniaxial extension (Pwe = 0), we remark that, in the case
of biaxial extension, it grows continuously without reaching a limit value: Eq. (4) shows that the reaction force
Rwe/wa not only varies according to the position of the warp/weft yarns’ summits, but also according to the
transverse extension load Pwe. In fact, when the yarn–yarn undulation transfer process is exhausted, the reac-



Fig. 5. Traction curves: effect of the transverse extension load Pwe.

Fig. 7. Variation of the flexional displacement: effect of the transverse load Pwe.

Fig. 6. Variation of the reaction load Rwe/wa: effect of the transverse load Pwe.
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tion force does not vary any more (since the positions of the contact points between yarns do not change any
more); it solely varies vs. Pwe, with a linear variation that explains the linear part observed on the biaxial
traction curves.
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2.3.2. Flexional displacement behavior

Fig. 7 illustrates the variation of the flexional displacement (given by Eq. (29a), Part I) vs. the extension
load Pwa, for the values of the transverse applied traction Pwe considered in (19): the flexional displacement
contribution of the structure decreases as the transverse load Pwe increases. We notice also that the flexional
displacement contribution rapidly reaches a limit value when the transverse load Pwe is large: indeed, when Pwe

increases, so does also the reaction load (Fig. 7), which leads to rapidly reduce the yarn–yarn undulation
transfer.

3. Conclusion

We have developed a discrete mass-spring model of the meso/macro mechanical behavior of a woven struc-
ture. This approach takes into account the yarn–yarn interactions at the mesoscopic scale, the effect of which
on the macroscopic behavior has been quantitatively assessed. We have shown that the macroscopic behavior
of the fabric strongly depends on the mechanical and geometrical yarns parameters and also on the ratio of the
biaxial loading. The contribution to the total deformation of the flexional displacement (due to the undula-
tions variation) and of the extensional displacement (due to the yarns stretching) during the fabric extension
has been analyzed. The flexional displacement is shown to tend towards a saturation value, whereas the exten-
sional displacement monotonously increases vs. the applied traction load.

The consideration of the yarns compressibility and the extension of the discrete approach to more complex
armors (such as serge, satin, or even three-dimensional weaving) constitutes the main perspective of develop-
ment of the discrete modeling strategies of fabric.
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