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Abstract

A constitutive model for describing the creep and creep damage in initially isotropic materials with different properties
in tension and compression has been applied to the modeling of creep deformation and creep damage growth in thin-
walled shells of revolution with the branched meridian. The approach of establishing the basic equations for axisymmet-
rically loaded branched shells under creep deformation and creep damage conditions has been introduced. To solve the
initial/boundary-value problem, the fourth-order Runge–Kutta–Merson’s method of time integration with the combina-
tion of the numerically stable Godunov’s method of discrete orthogonalization is used. The solution of the boundary value
problem for the branched shell at each time instant is reduced to integration of the series of systems of ordinary differential
equations describing the deformation of each branch and the shell with basic meridian. Some numerical examples are con-
sidered, and the processes of creep deformation and creep damage growth in a shell with non-branched meridian as well as
in a branched shell are analyzed. The influence of the tension–compression asymmetry on the stress–strain state and dam-
age evolution in a shell with non-branched meridian as well as in a branched shell with time are discussed.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Polycrystalline materials subjected to loadings at elevated temperature for a prolonged period of time
exhibit creep deformation considered as a time-dependent irreversible deformation process. In the initial
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stages of the creep process in polycrystalline materials, dislocations, impurity atoms and voids accumulate at
the grain boundaries to form grain boundary cavitation (Ashby and Brown, 1983; Evans, 1984; Riedel, 1987).
As microscopic cavities at the grain boundaries get larger and coalesce, dislocations, impurity atoms and voids
move out to grain boundaries, and microcracks along the grain facets begin to be formed. Growth and coa-
lescence of these microcracks lead to the creep rupture in the final stage of the creep process with formation of
macrocrack with some preferential orientation related to the loading conditions, for example, direction per-
pendicular to the maximum principal stress or the principal shear direction (Chen and Argon, 1981; Hayhurst,
1972; Hayhurst et al., 1980; Sakane and Tokura, 2002). Thus, creep deformation changes the microstructure
of polycrystalline materials by introducing dislocations, impurity atoms and voids in the initial stages, micro-
scopic cavities in the following, and microcracks in the final stage of the creep process, all of them, at the grain
boundaries with some preferential orientation related to the loading conditions. Furthermore, the velocity of
the growth of already existing grain boundary microscopic cavities and microcracks, and of the nucleation of
new ones essentially depends on the intensity of creep deformation. On the other hand, creep deformation of
materials is influenced by the growth of microscopic cavities and microcracks. This influence begins at the pri-
mary and secondary stages of the creep process, and becomes visible in the tertiary stage due to an increase of
the creep strain rate, preceding the creep rupture. Thus, creep deformation and material deterioration due to
growth of creep damage occur parallel to each other, and they have a reciprocal effect.

One of the creep features of a large class of polycrystalline materials (light alloys, gray cast irons, high-
strength steels, ceramic polycrystals, etc.) is their different behavior in tension and compression (Altenbach
et al., 1995; El-Shennawy et al., 1999; Gorev et al., 1978, 1979; Hostert, 1975; Khojasteh-Vahabzadeh,
1991; Lucas and Pelloux, 1981; Nechtelberger, 1985; Nikitenko et al., 1971; Ohashi et al., 1982; Pintschovius
et al., 1989; Rabotnov, 1969; Rix, 1997; Rubanov, 1987; Sosnin, 1970; Tilly and Harrison, 1972; Tsvelodub,
1991; Wereszczak et al., 1999; Zolochevskii, 1982, 1988). This creep feature may be investigated experimental-
ly by comparing creep curves obtained from uniaxial tests in tension and compression at the same temperature
and taking specimens at the same orientation from the body under consideration. In this way it is established
for many polycrystalline materials that the absolute values of creep strain, chosen for one and the same abso-
lute value of constant stress, and for one and the same value of time, are essentially different depending on the
sign of the stress. Thus, one has two different creep curves (one in tension, and the other in compression).

The changes of the microstrucutre in polycrystalline materials that result from the creep deformation need
to be also quantified under uniaxial tension and uniaxial compression. Analysis of the creep damage growth
under uniaxial tension in polycrystalline materials has been presented (Kassner and Hayes, 2003) by consid-
ering the appearance and growth of microscopic cavities (Fig. 1) and wedge microcracks (Fig. 2) along grain
boundaries located perpendicular to the axis of tensile loading. On the other hand, the creep damage growth
under uniaxial compression in ceramics has been related to the nucleation, growth and coalescence of cavities
(Fig. 3) in glassy grain boundary phases which are parallel to the compressive loading axis as well as to the
possible nucleation and growth in the following of microcracks formed at such grain boundary faces (Chan
et al., 1984; Page et al., 1984). Thus, the creep damage depends on the stress state type and has the directional
nature. In the general case, it is possible to assume that creep damage growth occurs at the grain boundaries
located perpendicular to the direction of the maximum principal stress (Cocks and Ashby, 1982; Needleman
and Rice, 1983; Tvergaard, 1984).

As an example, Fig. 4a–c shows the growth of the specific dissipation energy u with time t up to creep rup-
ture in an aluminum alloy AK4-1T at the temperature of 473 K (Gorev et al., 1978; Rubanov, 1987) under
Fig. 1. A schematic of the cavitating grain boundary located perpendicular to the axis of tensile loading in association with grain
boundary sliding.



Fig. 2. A schematic of the grain facets located perpendicular to the axis of tensile loading with a wedge microcrack (a) formed at grain
boundary triple points in association with grain boundary sliding, and with a wedge microcrack (b) as an accumulation of microscopic
cavities (Kassner and Hayes, 2003).

Fig. 3. A schematic of the cavitating grain boundary, BE, located parallel to the axis of compressive loading with illustration of the sliding
rate and normal stresses on adjacent grain boundaries (Chan et al., 1984).
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uniaxial tension (a), uniaxial compression (b) and pure torsion (c). Here the specific dissipation energy due to
damage is expressed as
u ¼
Z t

0

rkl _pkldt ð1Þ
where rkl is the stress tensor, pkl is the creep strain tensor, and the dot above the symbol denotes a derivative
with respect to time. It is seen from Fig. 4(a) and (b) that the maximum difference in creep behavior of an
aluminum alloy AK4-1T at 473 K between tension and compression is related to the third stage of the creep
curves. For example, the difference in the creep strain rate in the secondary stage of the creep curves for ten-
sion and compression is different by a factor of about two, whist the corresponding creep rupture times are
different by a factor of about three. This picture of the creep behavior of the material under consideration
can be explained taking into account an orientation-dependent character of microstructural changes during
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Fig. 4. Variation of the specific dissipation energy with time of an aluminum alloy AK4-1T at the temperature of 473 K under uniaxial
tension (a), uniaxial compression (b) and pure torsion (c). Experimental data are denoted by circles, while solid lines are the analogous
theoretical results.
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dislocation creep and for the directional nature of creep damage. In the case of uniaxial tension microstruc-
tural changes tend to evolve and propagate at the grain boundaries located perpendicular to the axis of load-
ing (active damage state).

On the other hand, under uniaxial compression microstructural changes in an aluminum alloy develop at
the grain boundaries located parallel to the axis of loading (passive damage state). Thus, the velocity of the
damage growth under uniaxial compression is much smaller in comparison with the magnitude under uniaxial
tension, i.e. there exists a unilateral nature of the creep damage.

An aluminum alloy AK4-1T at 473 K is initially an isotropic material under creep conditions. This fact was
established on the basis of creep tests conducted on specimens taken from the three principal directions of the
AK4-1T plate as well as on specimens oriented at an angle of p/4 with respect to the longitudinal and trans-
verse directions (Rubanov, 1987). One introduces the stress intensity
ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3

2
sklskl

r
ð2Þ
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where skl is the stress deviator, skl ¼ rkl � 1
3
I1dkl, I1 is the first invariant of the stress tensor, I1 = rkldkl, and dkl

is the Kronecker delta. It is seen from Fig. 4(a–c) that at the same absolute value of the stress intensity in Eq.
(2) and at any given time, the specific dissipation energy given by expression (1) is largest under pure torsion
and smallest under uniaxial compression. This also indicates the largest degree of the creep damage is in pure
torsion. Thus, the creep deformation and damage development in the light alloy under consideration must be
described by independent laws under conditions of pure torsion. Obviously, it is necessary to have the results
of three series of the creep tests (uniaxial tension, uniaxial compression and pure torsion) to describe the creep
deformation of an aluminum alloy AK4-1T at 473 K up to creep rupture. Note that the creep behavior of this
light alloy has been broadly discussed by Altenbach et al. (1995), Altenbach and Zolochevsky (1991), Betten
(2002), Betten et al. (1998, 1999, 2003), Kawai (2002), Mahnken (2003), Tsvelodub (1991), Voyiadjis and Zol-
ochevsky (2000), Zolochevskii (1982), Zolochevsky (1982, 1991), Zolochevsky and Obataya (2001), and Zol-
ochevsky and Voyiadjis (2005).

In the papers by Betten et al. (1998, 1999, 2003), Voyiadjis and Zolochevsky (2000), Zolochevsky and
Obataya (2001), and Zolochevsky and Voyiadjis (2005) a creep theory for initially isotropic polycrystalline
materials under multiaxial loading was recently proposed and discussed which is able to reproduce simul-
taneously different creep properties and different damage development in tension, compression and torsion.
Note that a damage variable can be introduced into the consideration as the scalar, vector or tensor of
different ranks. Consideration in the creep theory by Betten et al. (1998, 1999, 2003), Voyiadjis and Zol-
ochevsky (2000), Zolochevsky and Obataya (2001), and Zolochevsky and Voyiadjis (2005) of the scalar
damage parameter in a form of the specific dissipation energy simultaneously with putting into the expres-
sion for the equivalent stress an eigenvector associated with the maximum principal stress which often
coincides with the direction of the maximum damage gives the possibility to describe the experimental
results under uniaxial non-proportional, multiaxial proportional, and multiaxial non-proportional loadings
for both isothermal and non-isothermal processes in the primary, secondary, and tertiary creep states of
various polycrystalline materials. In this way, a good correlation has been obtained between the results
generated from the proposed creep theory and the experimental data for one-, two- and three-dimensional
stress states.

The aim of the present paper is the application of such a creep theory to the modeling of creep deformation
and creep damage in thin-walled branched shells. The present paper will not consider the movement of the
front of creep rupture in shells, the creep damage localization and the creep buckling of shells.

In the past, various authors have considered the formulation and solution of numerous boundary value
problems to analyze the creep deformation and creep damage growth in thin-walled shells. However, they
assumed the same creep deformation and same creep damage development in tension and compression for
the materials of shells (Altenbach and Naumenko, 1997; Hayhurst, 1981; Hyde et al., 2003; Kojic and Bathe,
1987; Miuazaki, 1987; Morachkovskii and Zolochevskii, 1980; Penny and Marriott, 1995; Rabotnov, 1969;
Shariyat and Eslami, 1996; Sichov, 1998, 2003; Takezono and Fujioka, 1981; Zolochevskii and Morachkov-
skii, 1982; Zolochevsky and Morachkovsky, 1978, 1979). For the first time, the creep deformation of shells
with non-branched meridian taking into account different behavior of materials in tension and compression
has been analyzed by Zolochevsky (1980, 1982), and subsequently by Betten and Borrmann (1987) and Alten-
bach and Zolochevsky (1991). However, to the best of the authors’ knowledge, up to now no investigations
exist of creep deformation and creep damage development in branched shells composed of materials with dif-
ferent behavior in tension and compression. This class of problems is particularly important because branched
axisymmetric shells are used in chemical, nuclear, aircraft and space facilities at high temperatures and under
severe operational and accidental conditions for which the anti-symmetric behavior in tension and compres-
sion is a significant feature.

2. Constitutive model

One considers a creep theory (Betten et al., 1998; Voyiadjis and Zolochevsky, 2000) for initially isotropic
polycrystalline materials, in which creep damage is related to dislocation creep and microstructural changes at
the grain boundaries which are orthogonal to the direction of the maximum principal stress. Creep strains are
assumed to be small.
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The expression for the equivalent stress re, setting the equivalence of uniaxial and multiaxial stress states, is
determined as
re ¼ r2 þ ar1 ð3Þ

where
r1 ¼ Crmax; rmax ¼ rklmkml

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AI2

1 þ BI2

q
ð4Þ
rmax is the maximum principal stress, I2 is the second invariant of the stress tensor, I2 = rklrkl , a is a weight
coefficient which takes into account the contribution of the linear scalar function r1 into expression (3), A, B

and C are material parameters dependent on the temperature, and m ¼ fmkg3
k¼1 is an eigenvector associated

with the maximum principal stress.
A number of comments need to be made in reference to Eqs. (3) and (4). First, the representation in Eq. (3)

of the equivalent stress consists of two terms that are determined by the simultaneous action of the two creep
mechanisms. The first term, which reduces to the stress intensity under the first and second conditions in Eq.
(5), represents the generalization of the stress intensity in the case of compressible materials under creep con-
ditions and models the influence of the movement of dislocations on the creep behavior. The second one in Eq.
(3) reflects the effect of microstructural changes at the grain faces on the creep behavior and gives the oppor-
tunity to describe different creep properties in tension and compression, damage induced anisotropy, and dif-
ferent damage development for tension and compression.

Second, expression (3) contains three material parameters (A, B and aC) as well as the linear and quadratic
scalar functions r1 and r2

2. Introduction of the cubic scalar function into the expression of the equivalent stress
is principally given in the papers by Betten et al. (1999, 2003) and Zolochevsky and Obataya (2001). It was
shown (Betten et al., 1998; Voyiadjis and Zolochevsky, 2000) that the results generated from the creep theory
based on the equivalent stress with linear and quadratic scalar functions and without a cubic scalar function
are in good correlation with the experimental data for two-dimensional stress states.

Third, the weight coefficient a is introduced in Eq. (3) for convenience only. It is impossible to find the coef-
ficient a separately from the parameter C. Expression (3) includes as particular cases a number of expressions
well known in the literature. For example, it is not difficult to see that under conditions
A ¼ � 1

2
; B ¼ 3

2
; a ¼ 0 ð5Þ
expressions (3) and (4) include as a particular case the expression for the equivalent stress
re ¼ ri ð6Þ

in the well-known Huber-von Mises-type potential based on the stress intensity given by Eq. (2) for the case of
isotropic materials with the same behavior in tension and compression.

The constitutive equation for creep deformation of the materials with different behaviors in tension and
compression has the following structure (Betten et al., 1998; Voyiadjis and Zolochevsky, 2000):
_pkl ¼
rm

e u�b

1� u
u�

� �q
AI1dkl þ Brkl

r2

þ aCmkml

� �
ð7Þ
where m, b and q are material parameters. The specific dissipation energy u given by expression (1) is taken in
Eq. (7) as the cumulative damage parameter. During the process of creep one has u 2 [0,u*]. An initial value
u = 0 corresponds to a reference state while a critical value u = u* corresponds to creep rupture time. Note
that uses of the function u�b in Eq. (7) at t = 0 leads to the infinite creep strain rates. For the description of
creep for small values of time it is necessary by analogy with the traditional creep theories (Betten, 2002; Rab-
otnov, 1969) to do the transition from the creep hardening model based on Eq. (7) with the specific dissipation
energy u and the function u�b to the equivalent creep model with time hardening where some power function
of time will be used instead of u�b. On the other hand, the exponential relation exp(�cu) with material param-
eter c is more convenient to use in Eq. (7) instead of the function u�b.
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Using Eqs. (1), (3), (4) and (7) one arrives at the following damage growth equation
_u ¼ rmþ1
e u�b

1� u
u�

� �q ð8Þ
Considering data of basic experiments such as uniaxial tension with the vector m = {1,0,0}T
_p11 ¼
Kþrm

11u
�b

1� u
u�

� �q ; u ¼ r11p11 ð9Þ
uniaxial compression with m = {0,1,0}T
_p11 ¼ �
K�jr11jmu�b

1� u
u�

� �q ; u ¼ r11p11 ð10Þ
and pure torsion with the vector m ¼ f1=
ffiffiffi
2
p

; 1=
ffiffiffi
2
p

; 0gT
2 _p12 ¼
K0rm

12u
�b

1� u
u�

� �q ; u ¼ 2r12p12 ð11Þ
and using material constants K+, K�, K0, m, b and q, it is possible to determine the material parameters in Eqs.
(7) and (8) of the constitutive model as follows (Betten et al., 1998; Voyiadjis and Zolochevsky, 2000):
aC ¼ K
1

mþ1
þ � K

1
mþ1�ffiffiffiffiffiffi

2B
p

¼ K
1

mþ1

0 � aC ð12Þ

A ¼ K
2

mþ1� � B
The superscript ‘T’ above denotes the transposition operation.
If the results from a set of basic experiments show that
K� ¼ Kþ; K0 ¼ 3
mþ1

2 Kþ ð13Þ
then together with Eq. (12) one has
B ¼ 3

2
K

2
mþ1
þ ; aC ¼ 0; A ¼ � 1

3
B ð14Þ
Using then Eqs. (2)–(4), (7), (8) and (14) it is not difficult to obtain
_pkl ¼

ffiffiffiffiffiffi
2
3
B

q
ri

� �m

u�b

1� u
u�

� �q

ffiffiffiffiffiffiffi
3

2
B

r
skl

ri
ð15Þ

_u ¼

ffiffiffiffiffiffi
2
3
B

q
ri

� �mþ1

u�b

1� u
u�

� �q
According to Rabotnov (1969), the alternative damage parameter x 2 [0, 1] may be defined as the microstruc-
tural change area density or net area reduction in the observed plane. An initial value x = 0 corresponds to a
reference state while a critical value x = x* = 1 corresponds to creep rupture time. One assumes that there
exists such a connection between the two damage parameters under consideration as x = u/u*. Then it is
not difficult to see that the value u = 0 at a reference state corresponds to the value x = 0 while the critical
value u = u* at the instant of creep rupture time corresponds to the critical value x = x* = 1. Introducing

new material constants A1 ¼
ffiffiffiffiffiffi
2
3
B

q� �mþ1

and D1 ¼ A1

u�
, Eq. (15), for example, in the case of u = u* = const
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can be rewritten as _pkl ¼ 3
2
A1

rm
i u�b

ð1�xÞq
skl
ri

, _x ¼ D1
rmþ1

i u�b

ð1�xÞq . Obviously, last equations can be considered as a partic-

ular case of the general creep theory by Rabotnov (1969) with the specific dissipation energy u as a measure of
the creep hardening and with scalar damage parameter x for the traditional damaged materials with charac-
teristics, which are independent of the kind of loading. Eq. (15) will be used in the following analyses of the
creep deformation in a thin-walled shell made from a material with the same behavior in tension and compres-
sion to test the proposed below numerical integration algorithm against the numerical data by Takezono and
Fujioka (1981) based on the power function of the hardening measure in the creep description.

3. Governing equations for branched shell under creep conditions

One considers a shell of revolution (Fig. 5) such that the meridian of the surface corresponds to the merid-
ian of the basic shell with K branch nodes. The number of open-branch meridians that converge at each node i

be defined by Mi (0 6 i 6 K). In Fig. 5 the meridians of branches that converge at the node k are numbered,
for example, from one up to Mk = 5. One introduces in the plane of the branched shell (Fig. 5) the axis of
rotation z and distance r of one of the meridian points from the axis of rotation. Each branch can be consid-
ered as a thin shell of revolution consisting of elements with a different geometry. The position of an arbitrary
point of the basic shell and each branch may be determined in the local (to basic shell or branch) orthogonal
curvilinear coordinate system xi (i = 1,2,3), where x1 and x2 are coordinates of the middle surface; x1

(x10 6 x1 6 x1N) is the length of the coordinate meridian arc referenced from the non-node end x1 = x10; x2

is the circumferential coordinate; x3 (�h/2 6 x3 6 h/2) is the distance of the point from the coordinate surface
referenced in the direction of the outer normal; and h = h(x1) is the thickness of the branch or basic shell.

One assumes that the branched shell is initially unstressed and undeformed at a temperature T0, and it is
then subjected to an axisymmetrically and statically applied thermal and force loading. One will now consider
the basic equations for each branch as well as for the shell with the basic meridian in the frame of the Kirch-
hoff–Love’s hypotheses and under the assumption that the strains of the coordinate surface as well as the
square of rotation angle of the normal are small compared to unity.

The relation between the meridional v1 and normal v3 displacements of an arbitrary point of the branched
shell and displacements of a point of the coordinate surface u1, u3 has the form (Flügge, 1973)
Fig. 5.
nodes
v1 ¼ u1 þ x3#1; v3 ¼ u3 ð16Þ

where
#1 ¼ k1u1 � u03 ð17Þ
Here, #1 is the angle of rotation of the normal to the coordinate surface in the direction x1; ð. . . Þ0 ¼ dð...Þ
dx1

; k1 is
the principal curvature of the coordinate surface in the direction x1, k1 = h

0
; and p � h is the angle between the

normal to the coordinate surface and the axis z. The strain components e11, e22 at an arbitrary point of the
shell are related to the strains e1, e2 and the changes of curvatures j1, j2 of its coordinate (middle) surface
in the form (e12 = 0 due to symmetry and e13 = e23 = e33 � 0 according to the Kirchoff–Love assumptions)
1

k

K

1

r

z

2

2

3 4

5

10x

Nx1

The branched meridian of a shell (thick line is the meridian of a basic shell, thin lines are meridians of branches, and the branch
are shown by white circles and numbered from one up to K).
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e11 ¼ e1 þ x3j1 ð1; 2Þ ð18Þ
where
e1 ¼ u01 þ k1u3; e2 ¼ qu1 þ k2u3; j1 ¼ #01; j2 ¼ q#1 ð19Þ
Here, k2 is the principal curvature of the coordinate surface in the circumferential direction, k2 ¼ sin h
r ; q ¼ cos h

r ,
and the symbol (1, 2) implies that the new equation follows from the equation under consideration by the cyc-
lic substitution of the subscripts 1 and 2.

The equations of equilibrium (Flügge, 1973) are given by
ðrN 1Þ0 � rqN 2 þ rk1Q1 þ rq1 ¼ 0

ðrQ1Þ
0 � rk1N 1 � rk2N 2 þ rq3 ¼ 0

ðrM1Þ0 � rqM2 � rQ1 ¼ 0

ð20Þ
where N1 and Q1 are the normal and transverse shear forces acting in the cross section x1 = const; N2 is the
normal force acting in the cross section x2 = const; M1 and M2 are meridional and circumferential bending
moments; and q1, q3 are the distributed loads referred to the coordinate surface.

One assumes the initial isotropy for the material of the branched shell, no effect of the damage on the elastic
deformation of the shell, and different behaviors in tension and compression for the material of the branched
shell under creep and creep damage conditions. Assuming also that total strains are composed of an elastic
part, thermal part and a part due to creep, and using the generalized Hooke’s law, one obtains
r11 ¼
E

1� m2
ðe11 þ me22Þ � ra

11 ð1; 2Þ ð21Þ
where the additional terms related to the thermal gradients and creep are expressed as
ra
11 ¼

E
1� m2

½ð1þ mÞaTðT � T 0Þ þ p11 þ mp22� ð1; 2Þ ð22Þ
Here, E, m and aT are the Young’s modulus, Poisson’s ratio and the coefficient of linear thermal expansion,
respectively. The creep strains in Eq. (22) are defined by Eqs. (7) and (8) describing creep deformation and
creep damage growth in the material of the branched shell with different behavior in tension and compression.

One now introduces the membrane forces and the bending moments
N 1 ¼
Z h=2

�h=2

r11dx3 ð1; 2Þ

M1 ¼
Z h=2

�h=2

r11zdx3

ð23Þ
Substituting the values of e11, e22 from Eq. (18) in Eq. (21) and the resulting expressions for the stresses r11, r22

in Eq. (23) and integrating over the shell thickness, one obtains the physical equations of shell theory as
follows:
N 1 ¼ C00e1 þ C01e2 þ C10j1 þ C11j2 � N a
1

N 2 ¼ C01e1 þ C00e2 þ C11j1 þ C10j2 � N a
2

M1 ¼ C10e1 þ C11e2 þ C20j1 þ C21j2 �Ma
1

M2 ¼ C11e1 þ C10e2 þ C21j1 þ C20j2 �Ma
2

ð24Þ
where Cpq are the stiffness characteristics of the shell
Cpq ¼
Z h

2

�h
2

Emq

1� m2
xp

3dx3 ðp ¼ 0; 1; 2; q ¼ 0; 1Þ ð25Þ
Na
i ; Ma

i (i = 1,2) are the additional terms related to the thermal gradients and creep
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N a
1 ¼

Z h
2

�h
2

ra
11dx3; Ma

1 ¼
Z h

2

�h
2

ra
11x3dx3 ð1; 2Þ ð26Þ
If elastic constants do not vary in the direction x3, for example, with changing of the temperature, the integrals
in Eq. (25) can then be calculated analytically as C10 = C11 = 0, C00 = Eh/(1 � m 2),

C01 = mC00, C20 = C00h2/12, C21 = mC20, but Eq. (26) can be integrated only numerically.
Thus, the kinematic equations (17) and (19), static equations (20) and physical ones (24) form a complete

system of the basic equations describing the creep deformation and creep damage at each instant of time in the
shell with the basic meridian and in each branch made from materials with different behavior in tension and
compression.

4. Initial/boundary-value problem

One now shows how it is possible to reduce the creep problem for a branched shell to the numerical inte-
gration at each time instant of the differential equations describing the creep deformation of each branch and
of the basic shell. For this purpose, one introduces the radial Nr and axial Nz components of the forces acting
in the cross section x1 = const of the branched shell as well as the corresponding components of the displace-
ment of the coordinate surface as follows:
N r ¼ N 1 cos hþ Q1 sin h; Nz ¼ N 1 sin h� Q1 cos h ur ¼ u1 cos hþ u3 sin h;

uz ¼ u1 sin h� u3 cos h ð27Þ
In the same way one writes also similar equalities for the radial and axial components of the surface loads
qr ¼ q1 cos hþ q3 sin h; qz ¼ q1 sin h� q3 cos h ð28Þ

One now introduces a vector of resolving functions
Y ¼ fN;UgT
; N ¼ fN r;Nz;M1gT

; U ¼ fur; uz; #1gT ð29Þ

Basic Eqs. (17), (19), (20) and (24) of the shell theory can then be transformed to the following system of non-
linear differential equations presented in vector form
Y0 ¼ ½P�Yþ f ð30Þ

Here the matrix of the system [P] and the free-term vector f have the following non-zero components:
P 11 ¼ �qð1þ k1Þ; P 12 ¼ �P 54 ¼ �k1k2; P 13 ¼ �P 64 ¼
k2

r
;

P 14 ¼
1

r2
ðC02 þ C01k1 � C11k2Þ; P 16 ¼ P 34 ¼

q
r
ðC12 þ C11k1 � C21k2Þ; P 22 ¼ �q;

P 31 ¼ �P 46 ¼ sin hþ k3q cos h; P 32 ¼ �P 56 ¼ ðk3k2 � 1Þ cos h; P 33 ¼ qðk4 � 1Þ;

P 36 ¼ q2ðC22 � C11k3 � C21k4Þ; P 41 ¼
C20

d
cos2 h; P 42 ¼ P 51 ¼

C20

d
sin h cos h;

P 43 ¼ P 61 ¼ �C10

d
cos h; P 44 ¼ qk1; P 52 ¼

C20

d
sin2 h; P 53 ¼ P 62 ¼ �

C10

d
sin h; P 63 ¼

C00

d
;

P 66 ¼ �qk4; f 1 ¼
1

r
ð�k1Na

1 � N a
2 þ k2Ma

1Þ � qr; f 2 ¼ �qz; f 3 ¼ qðk3N a
1 þ k4Ma

1 �Ma
2Þ;

f4 ¼
cos h

d
ðC20N a

1 � C10Ma
1Þ; f 5 ¼

sin h
d
ðC20N a

1 � C10Ma
1Þ; f 6 ¼

1

d
ðC00Ma

1 � C10Na
1Þ ð31Þ
where
k1 ¼
1

d
ðC11C10 � C01C20Þ; k2 ¼

1

d
ðC11C00 � C10C01Þ; k3 ¼

1

d
ðC20C11 � C21C10Þ;

k4 ¼
1

d
ðC21C00 � C11C10Þ; d ¼ C00C20 � C2

10 ð32Þ
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The surface loads as well as the effects of thermal gradient and creep are included at the free-term vector f .
The system of non-linear differential Eq. (30) must be complemented by the boundary conditions at the

non-node ends of the branched shell
½D�Y ¼ d ð33Þ

and by kinematic
Uþ ¼ U� ¼ Up ðp ¼ 1; 2; . . . ;MpÞ ð34Þ
and static matching conditions at the branch nodes
Nþ ¼ N� þ
XMk

p¼1

Np ð35Þ
where the specific form of the rectangular matrix [D] and the vector d depends on the kind of the boundary
conditions used. This will be discussed in the next section of the paper for various modes of fixing the shell; the
subscripts ‘+’ and ‘�’ correspond to the limiting values of the vector-functions N and U for the basic shell at
the kth node from the left and the right, respectively; and the subscript p = 1,2 . . . ,Mp corresponds to the val-
ues of the vector-functions N and U for each pth branch at the kth node. It is clear now that the selection of the
resolving functions in the form (27) allows the conditions at the branch nodes to be formulated in the simplest
way.

Thus, the analysis of the creep deformation and creep damage at each instant of time in the axisymmetri-
cally loaded branched shell made from materials with different behavior in tension and compression reduces to
a non-linear one-dimensional boundary-value problem given by Eqs. (30), (33), (34) and (35) with time as a
parameter. Due to the time dependence of the components of the vector f related to the creep, this formulated
boundary-value problem must be considered simultaneously with the initial-value problem (with respect to
time) for the ordinary differential Eqs. (7) and (8) with the natural initial conditions p11 = p22 = u = 0 at
t = 0. Thus, the proposed approach based on the direct integration of the initial-value problem for Eqs. (7)
and (8) by one of the numerical methods involves reducing the non-linear boundary-value problem to the solu-
tion of a sequence of linear boundary value problems with known components of the vector f related to the
creep. The integration of the initial-value problem for Eqs. (7) and (8) will be discussed later in this section.
Each linearized boundary-value problem (with fixed components of the vector f) will be solved by the discrete
orthogonal shooting method of Godunov (1961) reducing it to a series of Cauchy problems which will be inte-
grated by the Runge–Kutta’s method with the Gram–Schmidt’s discrete orthogonalization. The advantages of
the discrete orthogonal shooting method of Godunov are discussed in detail, for example, in the monograph
by Grigolyuk and Shalashilin (1991).

For an arbitrary branch, the general solution of Eq. (30) under the assumption that one knows the creep
terms in the vectorf at each instant time takes the form
Y ¼ ½~Y�Cþ Y ð36Þ
where ½~Y� is a matrix whose columns are solutions of the Cauchy problems for the homogeneous system of Eq.
(30) satisfying the homogeneous boundary conditions (33) at x = x0 resulting from Eq. (33) with d = 0,

~½Y� ¼
~½N�
~½U�

� �
;Y is the vector consisting at each instant in time the solution of the Cauchy problem for the inho-

mogeneous system of Eq. (30) satisfying the inhomogeneous boundary conditions (33) at x = x0, Y ¼ f
N

U g;

and C is the vector for the integration constants. Using Eq. (34) one can express the vector for the integration
constants for the pth branch at the node in the form
Cp ¼ ½~U��1
p ½~U��C� þ ½~U��1

p ðU� �UpÞ ð37Þ
Then using Eq. (35) one obtains the following equations for reconstructing the particular solutions for a basic
shell with a transition over the kth branch node
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½~N�þ ¼ ½~N�� þ
XMk

p¼1

½~N�p½~U�
�1
p ½~U��

Nþ ¼ N� þ
XMk

p¼1

ðNp þ ½~N�p½~U�
�1

p ðU� �UpÞÞ
ð38Þ
In addition, it is necessary to note that
½~U�þ ¼ ½~U��; Uþ ¼ U� ð39Þ
These relations follow from the kinematic condition of conjugation at the branch nodes (34). The obtained
quantities [Ñ]+, [Ũ]+, Nþ and Uþ are needed for finding at each time instant the solution given by Eq. (36)
in the interval between the kth and (k+1)th nodes.

Returning to the integration of the initial-value problem for Eqs. (7) and (8), it is possible to use various
numerical time integration algorithms (Bathe, 1996; Bellenger and Bussy, 2001; Boyle and Spence, 1983; Hay-
hurst et al., 1975; Hyde et al., 1996; Kraus, 1980; Lemaitre and Chaboche, 1990; Murakami and Liu, 1995;
Murakami et al., 2000; Saanouni et al., 1986; Simo and Hughes, 1998). The application of the well known
and simple time discretization method by step to step (Rabotnov, 1969) related to the integration of Eqs.
(7) and (8) by the Euler’s method with explicit scheme will lead to the large reduction of step sizes and
may lead to an unstable solution due to the acceleration of creep deformation in the tertiary creep stage
and due to the rapid growth of creep damage since the resulting equations are highly non-linear and stiff in
nature (Chen and Hsu, 1988; Kumar et al., 1980). Constant step time algorithms based on the explicit methods
are only conditionally stable, that is, the numerical solution is stable if the constant time step value is suffi-
ciently small, but it is unstable if the time step is larger than some critical value. Therefore, time integration
algorithms based on the explicit Euler method with automatic time step control (Kumar et al., 1980) or on the
implicit backward Euler method (Chaboche and Cailletaud, 1996; Saleeb et al., 2001) have been recommended
with detailed numerical treatments to use in the creep analysis of structures, but numerical examples with ter-
tiary creep stage and creep damage growth have been not considered in these analysis. On the other hand, a
high-order time integration method should be more efficient than a low-order method in creep damage anal-
ysis. For example, the truncation error of one time step of the Euler’s method is, for small time step Dt, can be
defined as CeDt while the classic Runge–Kutta method has an error CrkDt4, where Ce and Crk are constants.
Then, to achieve an error smaller than a certain specified value d, Euler’s method has to use a time step size not
larger than d=Ce. Thus, the classic Runge–Kutta method may use a time step of ðd=CrkÞ1=4 which is much larg-
er than the time step size of Euler’s method, when d is sufficiently small. For example, the cost of the calcu-
lations in the creep damage applications by the implicit backward Euler method is twice as high as the cost of
calculations by the explicit Runge–Kutta–Merson’s method with automatic time step control (Ling et al.,
2000). Thus, the time integration algorithm with an implicit backward Euler method used in the creep analysis
of shells by Altenbach and Naumenko (1997), Providakis (2002), and Shariyat and Eslami (1996) is compu-
tationally expensive. Furthermore, the varying time step algorithm based on the Runge–Kutta–Merson’s
method is much faster than its constant time step version, because it does not need small time steps and it
concentrates its computational effort only on those time intervals that are needed, taking large strides over
intervals. Also, a varying time step algorithm ensures that numerical instability does not occur. Taking into
account all these arguments, the fourth-order Runge–Kutta–Merson’s method with automatic selection of
time step sizes will be used in order to solve the initial value problem for Eqs. (7) and (8). This time integration
scheme has been applied for the first time in the study of creep of structures, to the authors’ best knowledge, by
Zolochevsky (1980, 1982) for the numerical analysis of creep deformation and creep damage growth in thin-
walled shells with non-branched meridian. It has been later used in creep analysis by many authors, for exam-
ple, by Hayhurst et al. (1984), Altenbach and Zolochevsky (1991), Sichov (1998), and Ling et al. (2000). Let us
introduce the following vector function including the creep strains and damage variable in all discretization
points of the branched shell
G ¼ fp11; p22;ug
T ð40Þ
Eqs. (7) and (8) can then be represented in vector form as follows
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dG

dt
¼ F½t;GðtÞ� ð41Þ
Here, F[t,G(t)] is a non-linear vector function defined by the right-hand sides of Eqs. (7) and (8) complemented
by Eqs. (21), (22) and (18). Then according to the fourth-order Runge–Kutta–Merson’s method, the unknown
functions at each point of the shell for the next instant time t+Dt can be calculated as:
Gkðt þ DtÞ ¼ GkðtÞ þ 0:5ðrk
1 þ 4rk

4 þ rk
5Þ þ 0ðDt5Þ ð42Þ
where
rk
1 ¼

Dt
3

F k½t;GjðtÞ�; rk
2 ¼

Dt
3

F k t þ Dt
3
;GjðtÞ þ rj

1

� �
; rk

3 ¼
Dt
3

F k t þ Dt
3
;GjðtÞ þ

1

2
ðrj

1 þ rj
2Þ

� �
;

rk
4 ¼

Dt
3

F k t þ Dt
2
;GjðtÞ þ

3

8
ðrj

1 þ 3rj
3Þ

� �
; rk

5 ¼
Dt
3

F k t þ Dt;GjðtÞ þ
3

2
ðrj

1 � 3rj
3 þ 4rj

4Þ
� �

ð43Þ
This method of the time integration allows for the estimation of the absolute error be of the order of Dt to the
fifth power. The initial time step size Dt = Dt0 is assigned, and its subsequent values can be chosen automat-
ically on the basis of the condition that the cumulative absolute error in the calculations
e ¼ max
k

rk
1 �

9

2
rk

3 þ 4rk
4 �

1

2
rk

5

� �
ð44Þ
does not exceed a certain specified value d. Here the following criterion for the change in the step size has
been used. If e > d, then the step Dt decreases by a factor of two and the calculations are repeated. If
e < d

32
, then the time step is doubled and the calculations are continued. Otherwise, the step size remains

as the previous one. Note also that calculations of the right sides in Eq. (43) requires the fivefold solution
of the linear boundary-value problem with fixed components of creep strain in Eq. (30) at each time step.
Thus, in the incremental approach considered here, the non-linear creep analysis is replaced by a series of
linear analyses for progressively increasing time, after each of which the material creep features in the shell
are recomputed. Furthermore, accurate time integration is provided until t 6 tmax or u 6 u*. Finally, note
that the presented approach can be considered as a particular form of the method of the continuation of
the solution with respect to a parameter, discussed, for example, in the monograph by Grigolyuk and
Shalashilin (1991).

5. Numerical examples

5.1. Example 1: primary creep behavior of a cylindrical shell

To test the proposed model for numerical analysis of the creep deformation of thin shells, one compares its
predictions against the numerical results by Takezono and Fujioka (1981) for the primary creep behavior of
the cylindrical shell subjected to internal pressure q3 = 1.47 MPa at the temperature of T = T0 = 808.15 K.
These authors used the implicit Euler’s method in the time-integration procedure and the finite difference
method to find solutions for the linearized boundary-value problems.

The geometrical parameters of the cylindrical shell are: r = 0.4 m, h ¼ p
2
, k1 = 0. The length of the shell and

the thickness are: 2L = 0.4 m and h = 0.004 m, respectively. Both ends of the shell are simply supported. Tak-
ing into account the symmetry of the shell, one considers one half of the shell with such boundary conditions
as: Nr = uz = #1 = 0 for x1 = 0 and Nz = M1 = ur = 0 for x1 = L. The material of the shell is stainless steel
SUS 22 with elastic constants E = 1.3 ·1 05 MPa and m = 0.3. Only the primary creep behavior of steel will
be considered, without consideration of the creep damage growth. Creep characteristics of the material are
independent from the kind of loading, and relations (13) take place. Material constants in Eq. (9) are:
K+ = 1.41 ·1 103 GPa�m�b h�1, m = 10.3, b = 0.661, q = 0.

Calculations have been performed using Eqs. (15) and (14) with the initial value of the time step
Dt0 = 10�8 h and with accuracy d = 10�11 until tmax = 5 h. Numerical results have been obtained for discret-
ization with 60 points along the meridian and 20 points along the thickness of the shell.
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Fig. 6 shows a satisfactory agreement at the time instant t = 5 h between the results generated from the pro-
posed approach (—) and the results by Takezono and Fujioka (1981) (•••).
5.2. Example 2: creep deformation and creep damage in a cylindrical shell for a material with different behavior in

tension and compression

One analyzes the effect of the tension–compression asymmetry of the material on the creep deformation and
the patterns of creep damage evolution in a cylindrical shell subjected to external pressure q3 = �5 MPa. The
geometrical parameters of the shell have the following values: r = 0.2 m, h ¼ p

2
, k1 = 0, h = 0.01 m, the length

L = 0.2 m. One edge of the shell is fixed (ur = uz = #1 = 0 for x1 = 0), and the other is free (Nr = Nz = M1 = 0
for x1 = L). The material of the shell is an aluminum alloy AK4-1T at a temperature of T = T0 = 473 K. The
elastic constants are E = 6 · 104 MPa, m = 0.35. The creep deformation and creep damage development in the
material, as discussed earlier in Section 1, are strongly dependent on the kind of loading. Its creep curves up to
creep rupture in uniaxial tension, uniaxial compression and pure torsion given in Fig. 4 can be described by
Eqs. (9)–(11) with the critical value of the damage variable given by
Fig. 6.
variati
circum
u� ¼ r2
i ða� bI1Þ ð45Þ
and with the following values of the material constants:
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ferential stresses across a thickness at the cross section with x1 = 0.1756 m (c).
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Kþ ¼ 55:0 GPa�m h�1; K� ¼ 22:5 GPa�m h�1; K0 ¼ 1:14� 104 GPa�m h�1;

m ¼ 8; b ¼ 0; q ¼ 3 ð46Þ
where
a ¼ 0:4 GPa�1; b ¼ 0:4 GPa�2 ð47Þ

Numerical results have been obtained using Eqs. (7), (8), (12), (45), (46), (47) with the initial value of the time
step Dt0 = 0.1 h and with accuracy d = 10�8 while u 6 0.99u*. Calculations are performed for discretization
with 101 points along the meridian and 11 points along the thickness of the shell. The failure initiation time is
found to be t* = 3.609 · 104 h, and the damage variable reaches its critical value on the outer surface of the
free edge of the cylindrical shell.

For comparison the analogous numerical analysis of the creep deformation and creep damage development
in the cylindrical shell is performed under the assumption of the same properties of the material in tension and
compression. In this way numerical results have been obtained using Eqs. (15), (14), (13), (45) and (47) with
the values of the material constants taken as:
Kþ ¼ K� ¼ 55:0 GPa�m h�1; K0 ¼ 7:72� 103 GPa�m h�1; m ¼ 8; b ¼ 0; q ¼ 3 ð48Þ

under the conditions given by Eq. (47). It was established that the failure initiation time of the cylindrical shell
is equal to t** = 1.038 · 104 h, and the damage variable reaches its critical value on the inner surface of the
fixed edge of the cylindrical shell. Comparing the values t* and t**, it can be concluded that, in fact, the failure
initiation time of the cylindrical shell made from the aluminum alloy AK4-1T with different properties in ten-
sion and compression is more than three times larger than the one with the same properties in tension and
compression.

The results of the numerical analysis of the creep deformation and creep damage patterns in the cylindrical
shell are given in Figs. 7–10. Here, the number 1 next to the curves refers to time t* for the case of a shell made
from the aluminum alloy AK4-1T with different properties in tension and compression, the number 2 refers to
time t** for the case of a shell from the material with identical properties in tension and compression, and the
number 3 refers to the initial elastic solution.

In the case 1 the values of the creep damage variable on the outer surface and on the inner surface in the
region near the fixed edge of a cylinder are different while the corresponding values in most regions of a cyl-
inder are practically the same (Fig. 7a and b). It is seen (Fig. 7c) that the consideration of different behavior in
tension and compression for the material leads to non-symmetrical damage distribution across the shell thick-
ness in the fixed edge of the shell. Deflections and strains in the cylindrical shell (Fig. 8a–c) are essentially
growing with time. By consideration of the same properties in tension and compression of the material a faster
growth of damage variable, deflections and strains with time is observed.

The redistribution of stresses on the inner and outer surfaces of the cylindrical shell with time has a complex
character, and it is essentially different in cases 1 and 2 (Fig. 9a–c). In general, there is a reduction in the initial
maximum values, accompanied by a corresponding increase in the initial minimum values. Consideration of
different behaviors of the material in tension and compression leads to the appearance of the stress in the mid-
dle surface of the cylindrical shell, movement of the neutral surface into the compressive field of the shell, and
non-symmetrical stress distribution across the shell thickness (Fig. 9d).

Under the assumption of identical properties of the material in tension and compression, a significant relax-
ation takes place with time of the meridional stress on the inner surface of the cylindrical shell in its fixed edge
(Fig. 10a). In contrast, this stress in a shell made from the aluminum alloy AK4-1T with different properties in
tension and compression changes a little with time.

The meridional strain on the inner surface of the shell in its fixed edge in case 1 changes slower in compar-
ison with case 2 (Fig. 10b). On the other hand, the growth of this strain in the free edge of the shell in case 1 is
much more significant when compared with case 2 (Fig. 10c).

Thus, the numerical analysis has shown that in the case of taking into account different behavior of the shell
material in tension and compression, the deflection growth, the change of the stress–strain state with time and
damage evolution are essentially different from the approach based on the assumption of identical properties
of the material in tension and compression.
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5.3. Example 3: creep deformation and creep damage in a branched shell for a material with different behavior in

tension and compression

One analyzes here the effect of the tension–compression asymmetry of the material on the creep deforma-
tion and creep damage evolution in the branched shell (Fig. 11) at a temperature of T = T0 = 473 K. The
branch ABC consists of a cylinder AB and a circular toroidal segment BC, and the basic shell DCE consists
of a conical part DC and a cylinder CE.

The characteristic dimensions are taken as follows: the length of sections LAB = LDC = LCE = L = 0.2 m;
the radius of the generating circle for a toroidal segment R ¼ 2L

p ; and the radii of the coordinate surface
RD = 0.2 m, RC = RE = 0.3 m, RA = RB = RC + R. The geometrical parameters of each section of the
branched shell have the following values: r = RA, h ¼ p

2
, k1 = 0 for the section AB; r = RC + R sin h,

h ¼ p
2
þ x1�x1B

R , k1 = R for the section BC, where x1B is the value of coordinate x1 at the point B;
r = RD + x1 cosh, cos h ¼ RC�RD

LDC
, sin h ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cos2 h
p

, k1 = 0 for the section DC; and r = RC, h ¼ p
2
, k1 = 0

for the section CE.
The thickness h of the sections of the branch has the following values: h = h1 = 0.02 m for the section AB;

and for the section BC: if x1B 6 x1 6 x1C � Dx1 then h = h1, and if x1C � Dx1 6 x1 6 x1C then
h ¼ h1 þ ðh2 � h1Þ x1�x1CþDx1

Dx1
, where h2 = 0.025 m, Dx1 = 0.02 m, x1 is the meridional coordinate of the branch,

x1B and x1C are the values of its meridional coordinate at the points B and C, respectively. For the sections of
the basic shell the thickness is taken as follows: for the section DC: if x1D 6 x1 6 x1C � Dx1 then h = h1, and if
x1C � Dx1 6 x1 6 x1C then h ¼ h1 þ ðh2 � h1Þ x1�x1CþDx1

Dx1
; for the section CE: if x1C 6 x1 6 x1C + Dx1 then

h ¼ h2 þ ðh1 � h2Þ x1�x1C
Dx1

, and if x1C + Dx1 6 x1 6 x1E then h = h1, where x1 is the meridional coordinate of
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the basic shell, x1D, x1C and x1E are the values of its meridional coordinate at the points D, C and E,
respectively.

The boundary condition at the point A of the branch is adopted to be the condition of symmetry
(Nr = uz = # 1 = 0 for x1 = x1A), and the boundary condition at the point E of the basic shell is adopted to
be the condition of asymmetry (Nz = ur = #1 = 0 for x1 = x1E). The other non-node end of the basic shell with
the applied compressive force Nz (Fig. 11) is free from the radial force and bending moment, and boundary
conditions here can be written as Nr = M1 = 0, Nz = �0.05 N/m for x1 = xD.

The surface load (Fig. 11) is equal to q3 = 5 MPa. The material and its constants are the same as in the
foregoing example.

Calculations have been performed with the initial value of the time step Dt0 = 0.01 h and with accuracy
d = 10�9 while u 6 0.99u*. Numerical results are obtained for discretization with 121 points along the merid-
ian of the basic shell and of the branch, and 11 points along the thickness of the branched shell. The results of
creep deformation and creep damage accumulation have been obtained with and without tension–compres-
sion asymmetry of the material of the branched shell under consideration. In the case of the branched shell
made from the aluminum alloy AK4-1T with different properties in tension and compression the failure ini-
tiation time is found to be t* = 6.316 · 104 h, and the damage variable reaches its critical value on the outer
surface of the cylindrical shell CE near the branch node C at the point with the meridional coordinate
x1 = 0.204 m. On the other hand, in the case of the branched shell made from the material with identical prop-
erties in tension and compression the failure initiation time is found to be to t** = 3.221 · 103 h, and the dam-
age variable reaches its critical value on the inner surface at the point C of the cylindrical shell. Thus, the
assumption of the same properties of the material in tension and compression leads to the acceleration of
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the creep damage growth and underestimation by a factor of about 20 of the failure initiation time. Further-
more, it is established that the effect of the tension–compression asymmetry of the material is more essential in
the case of the branched shell in comparison to the previous example of the shell with non-branched meridian.
Note that in order to understand the difference with the failure initiation time given above for the two numer-
ical cases under consideration, namely different and same behavior under tension and compression, it is nec-
essary to remember that the corresponding creep rupture times for tension and compression in basic
experiments with the same absolute value of the stress, as it is seen from Fig. 4a and b, are different by a factor
of about three.

Numerical analysis of the creep deformation and the creep damage development in the branched shell has
shown a large difference between the equivalent stresses for the two cases under consideration that leads to a
great difference between the failure initiation times.

The results of the numerical analysis of the creep deformation and creep damage development in the
branched shell under consideration are shown in Figs. 12–15. Here, the meridional coordinate is determined
as x1 2 [0,0.4 m] for the basic shell as well as for branch including coordinate x1 2 [0,0.2 m] for conical shell
DC and cylinder AB, and x1 2 [0.2 m, 0.4 m] for cylinder CE and toroidal segment BC, respectively. The num-
ber 1 next to the curves in Figs. 12–15 refers to the time t* for the case of a branched shell made from the
aluminum alloy AK4-1T with different properties in tension and compression, the number 2 refers to the
instant time t** for the case of a branched shell from the material with the same behavior in tension and com-
pression, and the number 3 refers to the initial elastic solution.

The plot for deflections of the branched shell under creep conditions and creep damage growth has a com-
plex character (Fig. 12a and b). The maximum deflection is obtained at the point A of the cylindrical part of
the branch. Even the displacements of the unloaded cylindrical part of the basic shell are significant due to its
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connection with the other sections of the branched shell. The distribution of the meridional creep strain on the
inner surface of the branched shell at the moment receding the failure initiation time is shown in Fig. 12c and
d. There is a large difference between the displacements and creep strains in cases 1 and 2. However, the max-
imum absolute value of the creep strain is obtained at the point C of the unloaded cylindrical part of the basic
shell, and this value is approximately the same in cases 1 and 2 (Fig. 12c and d). The last two statements apply
also for the total strains (Fig. 13a and b). It is seen also that the contribution of the elastic strains to the defor-
mation of the branched shell at the moment preceding the failure initiation time is very small; this deformation
is mostly defined by the creep strains.
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The final distribution of the creep damage variable on the inner surface of the branched shell is shown in
Fig. 15a and b. The cylindrical part of the basic shell and toroidal segment of the branch are the most dam-
aged sections of the branched shell under consideration. On the other hand, the damage in the conical part of
the basic shell develops with time much slower. In the case of a branched shell made from the aluminum alloy
AK4-1T with different properties in tension and compression, damage evolution is essentially different from
that of a branched shell made from the material with identical behavior in tension and compression.
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6. Discussion

In order to demonstrate the applicability of the proposed approach to the modeling of tertiary creep defor-
mation and creep damage growth in thin-walled shells as well as to show the accuracy of the obtained numer-
ical results, it is necessary to compare the creep damage patterns in the shell and its failure initiation time
based on the present model with other numerical model predictions existing in the literature as well as with
experimental data available for the shell.
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For this purpose, first, one compares the proposed model predictions against the experimental results by
Kaz (1955) for the tertiary creep of a closed-ended cylindrical shell at the temperature of T = T0 = 773 K.
The geometrical parameters of the shell have the following values: r = 0.01802 m, h ¼ p

2
, k1 = 0,

h = 0.001982 m, the length 2L = 0.07 m. The shell is subjected to internal pressure q3 = 1.47 MPa and to forc-
es Nz ¼ q3r

2
acting at the ends of the shell. Taking into account the symmetry of the shell, one considers one half

of the shell with such boundary conditions as: Nr = uz = #1 = 0 for x1 = 0 and Nz ¼ q3r
2

, M1 = ur = 0 for
x1 = L. The material of the shell is the carbon steel 20 with elastic constants E = 1.56 · 105 MPa and
m = 0.3. Creep and stress-rupture strength characteristics of the material depend on the kind of loading,
and the creep deformation up to rupture can be described using the expression for the equivalent stress given
by Eqs. (3) and (4) with the parameters A ¼ � 1

2
a2

1; B ¼ 3
2
a2

1; aC ¼ a2 by the following constitutive and
damage evolution equations (Betten et al., 1999):
_pkl ¼ B1

rm
e

ð1� xÞp t�c 3

2
a1

skl

ri
þ a2mkml

� �

_x ¼ C1

rQ
e

ð1� x#Þq t�t

ð49Þ
based on the Rabotnov damage parameter x. Material parameters in Eq. (49) are: m = 6.742, t = 0, # = 1,
c = 0.2337, q = Q = 6.331, p = 4, a1 = 0.1, a2 = 1, B1 = 1835 GPa�m hc�1 and C1 = 136.0 GPa�Q ht�1. Calcu-
lations have been performed using Eq. (49) instead of Eqs. (7) and (8) with the initial value of the time step
Dt0 = 0.1 h and with accuracy d = 10�4 while x 6 0.9. Numerical results have been obtained for discretization
with 60 points along the meridian and 11 points along the thickness of the shell. It was found that the failure
initiation time obtained for the cylindrical shell under consideration in the present approach was equal to
1180 h compared with 1058 h in the experiments by Kaz (1955).

Second, one compares the proposed model predictions against the numerical results by Sichov (1998) for
the tertiary creep of a cylindrical shell subjected to the internal pressure q3 = 32 MPa at the temperature of
T = T0 = 423 K. The geometrical parameters of the shell have the following values: r = 1 m, h ¼ p

2
, k1 = 0,

h = 0.2 m, the length L = 1 m. The boundary condition at one edge of the shell is adopted to be the condition
of symmetry (Nr = uz = #1 = 0 for x1 = 0), and the other edge of the shell is fixed (ur = uz = #1 = 0 for
x1 = L). The material of the shell is the aluminum alloy BS 1472 with elastic constants E = 71.1 GPa and
m = 0.3. Creep and damage characteristics of the material are assumed to be independent from the kind of
loading, and Eq. (49) has been used. Material parameters in Eq. (49) are: m = p = 11.034, t = c = 0.3099,
q = 12.107, Q = 8.22, a1 = 1, a2 = 0, B1 = 3.511 · 10�31 MPa�m hc�1 and C1 = 1.96 · 10�23 MPa�Q ht�1. It
is clear that the shell under consideration is a shell of the middle thickness, however the Kirchoff–Love
assumptions have been accepted in the proposed approach as well as by Sichov (1998). These assumptions
were made in the present investigation only for the sake of comparison with the numerical results by Sichov
(1998). Calculations have been performed using Eq. (49) instead of Eqs. (7) and (8) with the initial value of the
time step Dt0 = 1 h and with accuracy d = 10�3 while x 6 0.35. Numerical results have been obtained for dis-
cretization with 201 points along the meridian and 17 points along the thickness of the shell.

Fig. 16 shows a satisfactory agreement on the inner surface of the fixed edge of the shell between the results
generated from the proposed approach (—) and the results by Sichov (1998) (•••).

Third, one compares our model predictions against the numerical results by Sichov (2003) for the tertiary
creep of a circular plate subjected to the pressure q3 = 0.3 MPa at the temperature of T = T0 = 573 K. The
inner and outer radii of the circular plate are R0 = 0.01 m and Rn=0.04 m, respectively, and the thickness
h = 0.003 m. The circular plate can be considered as a particular case of the shell of the revolution with the
following values of the geometrical parameters: r = R0 + x1, h = 0, k1 = 0. One edge of the plate is free
(Nr = Nz = M1 = 0 for x1 = 0), and the other is fixed, but with possible movement in the radial direction
(Nr = uz = #1 = 0 for x1 = Rn � R0). The material of the plate is the aluminum alloy D16AT with elastic con-
stants E = 65 GPa and m = 0.3. Creep and damage characteristics of the material are assumed to be indepen-
dent from the kind of loading, and Eq. (49) has been used. Material parameters in Eq. (49) are:
m = p = Q = q = 3, c = t = 0, # = 1.4, a1 = 1, a2 = 0, B1 = 0.335 · 10�7 MPa�m hc�1 and C1 =
1.9 · 10�7 MPa�Q ht�1. Calculations have been performed using Eq. (49) instead of Eqs. (7) and (8) with
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the initial value of the time step Dt0 = 0.005 h and with accuracy d = 10�3 while x 6 0.9. Numerical results
have been obtained for discretization with 201 points in the radial direction and 17 points along the thickness
of the plate. It was found that the damage variable reaches its critical value on the inner surface of the fixed
edge of the circular plate, and the failure initiation time obtained for the plate under consideration in the pres-
ent approach was equal to 175 h compared with 200 h in the calculations by Sichov (2003).

Thus, a good correlation is obtained between the creep damage patterns in the shells and its failure initi-
ation time based on the present model, and other numerical model predictions existing in the literature as well
as the experimental data available for the shell.

7. Conclusions

In this paper, a model for the numerical analysis of creep deformation and creep damage growth in thin
branched shells of revolution under axisymmetrical loading is proposed. Constitutive equations for creep defor-
mation associated with dislocation creep and the growth of parallel penny-shaped microcracks as well as the evo-
lution equation for the damage variable are introduced in order to describe different properties of the material in
tension and compression. The corresponding initial/boundary-value problem is formulated, and the combina-
tion of the fourth-order Runge–Kutta–Merson’s method of time integration with automatic time step control
together with the discrete orthogonal shooting method of Godunov is proposed in order to obtain the numerical
solution. The predictions of the creep deformation and of the patterns of damage evolution with and without the
tension–compression asymmetry of the material are given for a shell with non-branched meridian and for a
branched shell. The numerical analysis has shown that in both cases the deflection growth, distribution of strains
and stresses, and the creep damage evolution are essentially different when analyzed with and without tension
asymmetry. This difference is obtained to be more significant for the branched shell. Therefore the consideration
of the tension–compression asymmetry of the material is particularly necessary for the analysis of the creep defor-
mation and the creep damage evolution in thin-walled branched shells. An assumption regarding identical behav-
ior of the material in tension and compression leads to a significant underestimation of the failure initiation time
of the branched shell. A good correlation is obtained between the creep damage patterns in the shells and its fail-
ure initiation time based on the present model, and other numerical model predictions existing in the literature as
well as the experimental data available for the shell.
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