Szimmetria és optimumok elágazásai

domokos-optimumdiagram

A projekt keretében a szimmetria és optimális viselkedés viszonyát vizsgáltuk mechanikai, adaptív dinamikai (evolúciós) és populáció-dinamikai feladatokban. Tartószerkezetek esetén megállapítottuk, hogy a szimmetrikus elrendezés gyakran javítható kis aszimmetria bevezetésével és pontos kritériumot határoztunk meg annak eldöntésére, hogy egy adott szerkezet adott szimmetria-sértő változók terében potenciálisan javítható-e. A kritérium nem igényel mechanikai számítást, pusztán az adott változók és a szerkezet szimmetria-csoportjának ismeretében elvégezhető. Egyszerű szerkezeti példákon illusztráltuk az eredményeinket és adtunk egy, a mérnöki gyakorlathoz közeli példát is. Kimutattuk, hogy az evolúció adaptív dinamikai modellje keretében a szimmetria-sértés létrejöhet és osztályoztuk ennek típusait, konkrét biológiai példákkal illusztrálva ezeket. Diszkrét populáció-dinamikai modelleket vizsgálva megmutattuk, hogy a modellben jelentkező diszkrét ciklusok zajjal szembeni stabilitása szorosan összefügg a vonatkozó sűrűségfüggvény aszimmetriájával. Rámutattunk, hogy diszkrét populációkban (és a valós esetek ilyenek) kaotikus dinamikára jellemző paraméterek csak megfelelő mértékű zaj jelenlétében mérhetőek. A projekt kiterjedt térbeli testek egyensúlyi helyzetei és geometriája közötti összefüggések vizsgálatára is. Ennek keretében sikerült igazolnunk V.I. Arnold egy sejtését, mely szerint létezik olyan homogén, konvex test melynek pontosan két egyensúlyi helyzete van.

 

Témavezető: Domokos Gábor

Résztvevők: Sipos Andás Árpád, Várkonyi Péter

Projekt: OTKA 49885, 2005-01-01 - 2008-12-31

 

Kövess minket a Facebook-on!